Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 May;111(1):1–7. doi: 10.1104/pp.111.1.1

Regulation of Chlorophyll Biosynthesis in Angiosperms.

S Reinbothe 1, C Reinbothe 1
PMCID: PMC157807  PMID: 12226272

Full Text

The Full Text of this article is available as a PDF (663.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong G. A., Runge S., Frick G., Sperling U., Apel K. Identification of NADPH:protochlorophyllide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol. 1995 Aug;108(4):1505–1517. doi: 10.1104/pp.108.4.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Block M. A., Joyard J., Douce R. Site of synthesis of geranylgeraniol derivatives in intact spinach chloroplasts. Biochim Biophys Acta. 1980 Aug 1;631(1):210–219. doi: 10.1016/0304-4165(80)90069-0. [DOI] [PubMed] [Google Scholar]
  3. Bollivar D. W., Suzuki J. Y., Beatty J. T., Dobrowolski J. M., Bauer C. E. Directed mutational analysis of bacteriochlorophyll a biosynthesis in Rhodobacter capsulatus. J Mol Biol. 1994 Apr 15;237(5):622–640. doi: 10.1006/jmbi.1994.1260. [DOI] [PubMed] [Google Scholar]
  4. Gibson L. C., Willows R. D., Kannangara C. G., von Wettstein D., Hunter C. N. Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: reconstitution of activity by combining the products of the bchH, -I, and -D genes expressed in Escherichia coli. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1941–1944. doi: 10.1073/pnas.92.6.1941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Holtorf H., Reinbothe S., Reinbothe C., Bereza B., Apel K. Two routes of chlorophyllide synthesis that are differentially regulated by light in barley (Hordeum vulgare L.). Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3254–3258. doi: 10.1073/pnas.92.8.3254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Koncz C., Mayerhofer R., Koncz-Kalman Z., Nawrath C., Reiss B., Redei G. P., Schell J. Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging in Arabidopsis thaliana. EMBO J. 1990 May;9(5):1337–1346. doi: 10.1002/j.1460-2075.1990.tb08248.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kruse E., Mock H. P., Grimm B. Reduction of coproporphyrinogen oxidase level by antisense RNA synthesis leads to deregulated gene expression of plastid proteins and affects the oxidative defense system. EMBO J. 1995 Aug 1;14(15):3712–3720. doi: 10.1002/j.1460-2075.1995.tb00041.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Matringe M., Camadro J. M., Block M. A., Joyard J., Scalla R., Labbe P., Douce R. Localization within chloroplasts of protoporphyrinogen oxidase, the target enzyme for diphenylether-like herbicides. J Biol Chem. 1992 Mar 5;267(7):4646–4651. [PubMed] [Google Scholar]
  9. Matringe M., Camadro J. M., Joyard J., Douce R. Localization of ferrochelatase activity within mature pea chloroplasts. J Biol Chem. 1994 May 27;269(21):15010–15015. [PubMed] [Google Scholar]
  10. Mösinger E., Batschauer A., Schäfer E., Apel K. Phytochrome control of in vitro transcription of specific genes in isolated nuclei from barley (Hordeum vulgare). Eur J Biochem. 1985 Feb 15;147(1):137–142. doi: 10.1111/j.1432-1033.1985.tb08729.x. [DOI] [PubMed] [Google Scholar]
  11. Nadler K., Granick S. Controls on chlorophyll synthesis in barley. Plant Physiol. 1970 Aug;46(2):240–246. doi: 10.1104/pp.46.2.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Reinbothe C., Apel K., Reinbothe S. A light-induced protease from barley plastids degrades NADPH:protochlorophyllide oxidoreductase complexed with chlorophyllide. Mol Cell Biol. 1995 Nov;15(11):6206–6212. doi: 10.1128/mcb.15.11.6206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Reinbothe S., Reinbothe C., Holtorf H., Apel K. Two NADPH:Protochlorophyllide Oxidoreductases in Barley: Evidence for the Selective Disappearance of PORA during the Light-Induced Greening of Etiolated Seedlings. Plant Cell. 1995 Nov;7(11):1933–1940. doi: 10.1105/tpc.7.11.1933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Reinbothe S., Reinbothe C., Runge S., Apel K. Enzymatic product formation impairs both the chloroplast receptor-binding function as well as translocation competence of the NADPH: protochlorophyllide oxidoreductase, a nuclear-encoded plastid precursor protein. J Cell Biol. 1995 Apr;129(2):299–308. doi: 10.1083/jcb.129.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Smith A. G., Santana M. A., Wallace-Cook A. D., Roper J. M., Labbe-Bois R. Isolation of a cDNA encoding chloroplast ferrochelatase from Arabidopsis thaliana by functional complementation of a yeast mutant. J Biol Chem. 1994 May 6;269(18):13405–13413. [PubMed] [Google Scholar]
  16. Von Wettstein D., Gough S., Kannangara C. G. Chlorophyll Biosynthesis. Plant Cell. 1995 Jul;7(7):1039–1057. doi: 10.1105/tpc.7.7.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Walker C. J., Weinstein J. D. Further characterization of the magnesium chelatase in isolated developing cucumber chloroplasts : substrate specificity, regulation, intactness, and ATP requirements. Plant Physiol. 1991 Apr;95(4):1189–1196. doi: 10.1104/pp.95.4.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Walker C. J., Weinstein J. D. In vitro assay of the chlorophyll biosynthetic enzyme Mg-chelatase: resolution of the activity into soluble and membrane-bound fractions. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5789–5793. doi: 10.1073/pnas.88.13.5789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wettstein D. V., Kahn A., Nielsen O. F., Gough S. Genetic regulation of chlorophyll synthesis analyzed with mutants in barley. Science. 1974 May 17;184(4138):800–802. doi: 10.1126/science.184.4138.800. [DOI] [PubMed] [Google Scholar]
  20. Wilks H. M., Timko M. P. A light-dependent complementation system for analysis of NADPH:protochlorophyllide oxidoreductase: identification and mutagenesis of two conserved residues that are essential for enzyme activity. Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):724–728. doi: 10.1073/pnas.92.3.724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Witty M., Wallace-Cook A. D., Albrecht H., Spano A. J., Michel H., Shabanowitz J., Hunt D. F., Timko M. P., Smith A. G. Structure and expression of chloroplast-localized porphobilinogen deaminase from pea (Pisum sativum L.) isolated by redundant polymerase chain reaction. Plant Physiol. 1993 Sep;103(1):139–147. doi: 10.1104/pp.103.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES