Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Nov;112(3):1101–1109. doi: 10.1104/pp.112.3.1101

A1 toxicity in yeast. A role for Mg?

C W MacDiarmid 1, R C Gardner 1
PMCID: PMC158036  PMID: 8938412

Abstract

We have established conditions in which soluble Al is toxic to the yeast Saccharomyces cerevisiae. The major modifications to a standard synthetic medium were lowering the pH and the concentration of Mg ions. Alterations to the PO4, Ca, or K concentration had little effect on toxicity. Organic acids known to chelate Al reduced its toxicity, suggesting that Al3+ is the toxic Al species. The unique ability of Mg ions to ameliorate Al toxicity led us to investigate the hypothesis that Al inhibits Mg uptake by yeast. Yeast cells accumulate Mg, Co, Zn, Ni, and Mn ions via the same transport system (G.F. Fuhrmann, A. Rothstein [1968] Biochim Biophys Acta 163: 325-330). Al3+ inhibited the accumulation of 57Co2+ by yeast cells more effectively than Ga, La, or Mg. In addition, a mutant yeast strain with a defect in divalent cation uptake proved to be more sensitive to Al than a wild-type strain. Taken together, these results suggest that Al may cause Mg deficiency in yeast by blocking Mg transport. We discuss the relevance of yeast as a model for the study of Al toxicity in plant systems.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borst-Pauwels G. W. Ion transport in yeast. Biochim Biophys Acta. 1981 Dec;650(2-3):88–127. doi: 10.1016/0304-4157(81)90002-2. [DOI] [PubMed] [Google Scholar]
  2. Conklin D. S., Kung C., Culbertson M. R. The COT2 gene is required for glucose-dependent divalent cation transport in Saccharomyces cerevisiae. Mol Cell Biol. 1993 Apr;13(4):2041–2049. doi: 10.1128/mcb.13.4.2041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Delhaize E., Ryan P. R. Aluminum Toxicity and Tolerance in Plants. Plant Physiol. 1995 Feb;107(2):315–321. doi: 10.1104/pp.107.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Delhaize E., Ryan P. R., Randall P. J. Aluminum Tolerance in Wheat (Triticum aestivum L.) (II. Aluminum-Stimulated Excretion of Malic Acid from Root Apices). Plant Physiol. 1993 Nov;103(3):695–702. doi: 10.1104/pp.103.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gassmann W., Schroeder J. I. Inward-Rectifying K+ Channels in Root Hairs of Wheat (A Mechanism for Aluminum-Sensitive Low-Affinity K+ Uptake and Membrane Potential Control). Plant Physiol. 1994 Aug;105(4):1399–1408. doi: 10.1104/pp.105.4.1399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Huang J. W., Pellet D. M., Papernik L. A., Kochian L. V. Aluminum Interactions with Voltage-Dependent Calcium Transport in Plasma Membrane Vesicles Isolated from Roots of Aluminum-Sensitive and -Resistant Wheat Cultivars. Plant Physiol. 1996 Feb;110(2):561–569. doi: 10.1104/pp.110.2.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Iida H., Sakaguchi S., Yagawa Y., Anraku Y. Cell cycle control by Ca2+ in Saccharomyces cerevisiae. J Biol Chem. 1990 Dec 5;265(34):21216–21222. [PubMed] [Google Scholar]
  8. Jones D. L., Kochian L. V. Aluminum Inhibition of the Inositol 1,4,5-Trisphosphate Signal Transduction Pathway in Wheat Roots: A Role in Aluminum Toxicity? Plant Cell. 1995 Nov;7(11):1913–1922. doi: 10.1105/tpc.7.11.1913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kinraide T. B., Parker D. R. Cation amelioration of aluminum toxicity in wheat. Plant Physiol. 1987 Mar;83(3):546–551. doi: 10.1104/pp.83.3.546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kushnir S., Babiychuk E., Kampfenkel K., Belles-Boix E., Van Montagu M., Inzé D. Characterization of Arabidopsis thaliana cDNAs that render yeasts tolerant toward the thiol-oxidizing drug diamide. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10580–10584. doi: 10.1073/pnas.92.23.10580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Macdonald T. L., Humphreys W. G., Martin R. B. Promotion of tubulin assembly by aluminum ion in vitro. Science. 1987 Apr 10;236(4798):183–186. doi: 10.1126/science.3105058. [DOI] [PubMed] [Google Scholar]
  12. Martin R. B. Aluminium speciation in biology. Ciba Found Symp. 1992;169:5–25. doi: 10.1002/9780470514306.ch2. [DOI] [PubMed] [Google Scholar]
  13. Mehra R. K., Winge D. R. Metal ion resistance in fungi: molecular mechanisms and their regulated expression. J Cell Biochem. 1991 Jan;45(1):30–40. doi: 10.1002/jcb.240450109. [DOI] [PubMed] [Google Scholar]
  14. Miyasaka S. C., Buta J. G., Howell R. K., Foy C. D. Mechanism of aluminum tolerance in snapbeans : root exudation of citric Acid. Plant Physiol. 1991 Jul;96(3):737–743. doi: 10.1104/pp.96.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Okorokov L. A., Lichko L. P., Kadomtseva V. M., Kholodenko V. P., Titovsky V. T., Kulaev I. S. Energy-dependent transport of manganese into yeast cells and distribution of accumulated ions. Eur J Biochem. 1977 May 16;75(2):373–377. doi: 10.1111/j.1432-1033.1977.tb11538.x. [DOI] [PubMed] [Google Scholar]
  16. Rengel Z. Competitive Al Inhibition of Net Mg Uptake by Intact Lolium multiflorum Roots : II. Plant Age Effects. Plant Physiol. 1990 Jul;93(3):1261–1267. doi: 10.1104/pp.93.3.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rengel Z., Robinson D. L. Competitive Al Inhibition of Net Mg Uptake by Intact Lolium multiflorum Roots : I. Kinetics. Plant Physiol. 1989 Dec;91(4):1407–1413. doi: 10.1104/pp.91.4.1407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sigler K., Knotková A., Páca J., Wurst M. Extrusion of metabolites from baker's yeast during glucose-induced acidification. Folia Microbiol (Praha) 1980;25(4):311–317. doi: 10.1007/BF02876611. [DOI] [PubMed] [Google Scholar]
  19. Wagenbach M., O'Rourke K., Vitez L., Wieczorek A., Hoffman S., Durfee S., Tedesco J., Stetler G. Synthesis of wild type and mutant human hemoglobins in Saccharomyces cerevisiae. Biotechnology (N Y) 1991 Jan;9(1):57–61. doi: 10.1038/nbt0191-57. [DOI] [PubMed] [Google Scholar]
  20. Winston F., Dollard C., Ricupero-Hovasse S. L. Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast. 1995 Jan;11(1):53–55. doi: 10.1002/yea.320110107. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES