Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Nov;112(3):1201–1210. doi: 10.1104/pp.112.3.1201

Differential expression of soybean cysteine proteinase inhibitor genes during development and in response to wounding and methyl jasmonate.

M A Botella 1, Y Xu 1, T N Prabha 1, Y Zhao 1, M L Narasimhan 1, K A Wilson 1, S S Nielsen 1, R A Bressan 1, P M Hasegawa 1
PMCID: PMC158047  PMID: 8938418

Abstract

Three cysteine proteinase inhibitor cDNA clones (pL1, pR1, and pN2) have been isolated from a soybean (Glycine max L. Merr.) embryo library. The proteins encoded by the clones are between 60 and 70% identical and contain the consensus QxVxG motif and W residue in the appropriate spatial context for interaction with the cysteine proteinase papain. L1, R1, and N2 mRNAs were differentially expressed in different organs of plants (juvenile and mature) and seedlings, although N2 mRNA was constitutive only in flowers. R1 and N2 transcripts were induced by wounding or methyl jasmonate (M-JA) treatment in local and systemic leaves coincident with increased papain inhibitory activity, indicating a role for R1 and N2 in plant defense. The L1 transcript was constitutively expressed in leaves and was induced slightly by M-JA treatment in roots. Unlike the chymotrypsin/trypsin proteinase inhibitor II gene (H. Peña-Cortés, J. Fisahn, L. Willmitzer [1995] Proc Natl Acad Sci USA 92: 4106-4113), expression of the soybean genes was only marginally induced by abscisic acid and only in certain tissues. Norbornadiene, a competitive inhibitor of ethylene binding, abolished the wounding or M-JA induction of R1 and N2 mRNAs but not the accumulation of the wound-inducible vspA transcript. Presumably, ethylene binding to its receptor is involved in the wound inducibility of R1 and N2 but not vspA mRNAs. Bacterial recombinant L1 and R1 proteins, expressed as glutathione S-transferase fusion proteins, exhibited substantial inhibitory activities against vicilin peptidohydrolase, the major thiol endopeptidase in mung bean seedlings. Recombinant R1 protein had much greater cysteine proteinase inhibitor activity than recombinant L1 protein, consistent with the wound inducibility of the R1 gene and its presumed role in plant defense.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe K., Emori Y., Kondo H., Arai S., Suzuki K. The NH2-terminal 21 amino acid residues are not essential for the papain-inhibitory activity of oryzacystatin, a member of the cystatin superfamily. Expression of oryzacystatin cDNA and its truncated fragments in Escherichia coli. J Biol Chem. 1988 Jun 5;263(16):7655–7659. [PubMed] [Google Scholar]
  2. Abe K., Emori Y., Kondo H., Suzuki K., Arai S. Molecular cloning of a cysteine proteinase inhibitor of rice (oryzacystatin). Homology with animal cystatins and transient expression in the ripening process of rice seeds. J Biol Chem. 1987 Dec 15;262(35):16793–16797. [PubMed] [Google Scholar]
  3. Abe M., Abe K., Kuroda M., Arai S. Corn kernel cysteine proteinase inhibitor as a novel cystatin superfamily member of plant origin. Molecular cloning and expression studies. Eur J Biochem. 1992 Nov 1;209(3):933–937. doi: 10.1111/j.1432-1033.1992.tb17365.x. [DOI] [PubMed] [Google Scholar]
  4. Baumgartner B., Chrispeels M. J. Purification and characterization of vicilin peptidohydrolase, the major endopeptidase in the cotyledons of mung-bean seedlings. Eur J Biochem. 1977 Jul 15;77(2):223–233. doi: 10.1111/j.1432-1033.1977.tb11661.x. [DOI] [PubMed] [Google Scholar]
  5. Berti P. J., Storer A. C. Alignment/phylogeny of the papain superfamily of cysteine proteases. J Mol Biol. 1995 Feb 17;246(2):273–283. doi: 10.1006/jmbi.1994.0083. [DOI] [PubMed] [Google Scholar]
  6. Bode W., Engh R., Musil D., Thiele U., Huber R., Karshikov A., Brzin J., Kos J., Turk V. The 2.0 A X-ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases. EMBO J. 1988 Aug;7(8):2593–2599. doi: 10.1002/j.1460-2075.1988.tb03109.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bolter C. J. Methyl Jasmonate Induces Papain Inhibitor(s) in Tomato Leaves. Plant Physiol. 1993 Dec;103(4):1347–1353. doi: 10.1104/pp.103.4.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Botella M. A., Quesada M. A., Kononowicz A. K., Bressan R. A., Pliego F., Hasegawa P. M., Valpuesta V. Characterization and in situ localization of a salt-induced tomato peroxidase mRNA. Plant Mol Biol. 1994 Apr;25(1):105–114. doi: 10.1007/BF00024202. [DOI] [PubMed] [Google Scholar]
  9. Botella M. A., Quesada M. A., Medina M. I., Pliego F., Valpuesta V. Induction of a tomato peroxidase gene in vascular tissue. FEBS Lett. 1994 Jun 27;347(2-3):195–198. doi: 10.1016/0014-5793(94)00542-7. [DOI] [PubMed] [Google Scholar]
  10. Chen M. S., Johnson B., Wen L., Muthukrishnan S., Kramer K. J., Morgan T. D., Reeck G. R. Rice cystatin: bacterial expression, purification, cysteine proteinase inhibitory activity, and insect growth suppressing activity of a truncated form of the protein. Protein Expr Purif. 1992 Feb;3(1):41–49. doi: 10.1016/1046-5928(92)90054-z. [DOI] [PubMed] [Google Scholar]
  11. Delcasso-Tremousaygue D., Grellet F., Panabieres F., Ananiev E. D., Delseny M. Structural and transcriptional characterization of the external spacer of a ribosomal RNA nuclear gene from a higher plant. Eur J Biochem. 1988 Mar 15;172(3):767–776. doi: 10.1111/j.1432-1033.1988.tb13956.x. [DOI] [PubMed] [Google Scholar]
  12. Doares S. H., Syrovets T., Weiler E. W., Ryan C. A. Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4095–4098. doi: 10.1073/pnas.92.10.4095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Farmer E. E., Johnson R. R., Ryan C. A. Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic Acid. Plant Physiol. 1992 Mar;98(3):995–1002. doi: 10.1104/pp.98.3.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Farmer E. E., Ryan C. A. Octadecanoid Precursors of Jasmonic Acid Activate the Synthesis of Wound-Inducible Proteinase Inhibitors. Plant Cell. 1992 Feb;4(2):129–134. doi: 10.1105/tpc.4.2.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fernandes K. V., Sabelli P. A., Barratt D. H., Richardson M., Xavier-Filho J., Shewry P. R. The resistance of cowpea seeds to bruchid beetles is not related to levels of cysteine proteinase inhibitors. Plant Mol Biol. 1993 Oct;23(1):215–219. doi: 10.1007/BF00021433. [DOI] [PubMed] [Google Scholar]
  16. Gan S., Amasino R. M. Inhibition of leaf senescence by autoregulated production of cytokinin. Science. 1995 Dec 22;270(5244):1986–1988. doi: 10.1126/science.270.5244.1986. [DOI] [PubMed] [Google Scholar]
  17. Goetting-Minesky M. P., Mullin B. C. Differential gene expression in an actinorhizal symbiosis: evidence for a nodule-specific cysteine proteinase. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9891–9895. doi: 10.1073/pnas.91.21.9891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Greenberg J. T., Guo A., Klessig D. F., Ausubel F. M. Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell. 1994 May 20;77(4):551–563. doi: 10.1016/0092-8674(94)90217-8. [DOI] [PubMed] [Google Scholar]
  19. Guan K. L., Dixon J. E. Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal Biochem. 1991 Feb 1;192(2):262–267. doi: 10.1016/0003-2697(91)90534-z. [DOI] [PubMed] [Google Scholar]
  20. Hildmann T., Ebneth M., Peña-Cortés H., Sánchez-Serrano J. J., Willmitzer L., Prat S. General roles of abscisic and jasmonic acids in gene activation as a result of mechanical wounding. Plant Cell. 1992 Sep;4(9):1157–1170. doi: 10.1105/tpc.4.9.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Holwerda B. C., Rogers J. C. Purification and characterization of aleurain : a plant thiol protease functionally homologous to Mammalian cathepsin h. Plant Physiol. 1992 Jul;99(3):848–855. doi: 10.1104/pp.99.3.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jongsma M. A., Bakker P. L., Peters J., Bosch D., Stiekema W. J. Adaptation of Spodoptera exigua larvae to plant proteinase inhibitors by induction of gut proteinase activity insensitive to inhibition. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):8041–8045. doi: 10.1073/pnas.92.17.8041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Koizumi M., Yamaguchi-Shinozaki K., Tsuji H., Shinozaki K. Structure and expression of two genes that encode distinct drought-inducible cysteine proteinases in Arabidopsis thaliana. Gene. 1993 Jul 30;129(2):175–182. doi: 10.1016/0378-1119(93)90266-6. [DOI] [PubMed] [Google Scholar]
  24. Kondo H., Abe K., Nishimura I., Watanabe H., Emori Y., Arai S. Two distinct cystatin species in rice seeds with different specificities against cysteine proteinases. Molecular cloning, expression, and biochemical studies on oryzacystatin-II. J Biol Chem. 1990 Sep 15;265(26):15832–15837. [PubMed] [Google Scholar]
  25. Liang C., Brookhart G., Feng G. H., Reeck G. R., Kramer K. J. Inhibition of digestive proteinases of stored grain Coleoptera by oryzacystatin, a cysteine proteinase inhibitor from rice seed. FEBS Lett. 1991 Jan 28;278(2):139–142. doi: 10.1016/0014-5793(91)80102-9. [DOI] [PubMed] [Google Scholar]
  26. Linthorst H. J., van der Does C., Brederode F. T., Bol J. F. Circadian expression and induction by wounding of tobacco genes for cysteine proteinase. Plant Mol Biol. 1993 Feb;21(4):685–694. doi: 10.1007/BF00014551. [DOI] [PubMed] [Google Scholar]
  27. Mason H. S., Mullet J. E. Expression of two soybean vegetative storage protein genes during development and in response to water deficit, wounding, and jasmonic acid. Plant Cell. 1990 Jun;2(6):569–579. doi: 10.1105/tpc.2.6.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Michaud D., Nguyen-Quoc B., Yelle S. Selective inhibition of Colorado potato beetle cathepsin H by oryzacystatins I and II. FEBS Lett. 1993 Sep 27;331(1-2):173–176. doi: 10.1016/0014-5793(93)80320-t. [DOI] [PubMed] [Google Scholar]
  29. Nadeau J. A., Zhang X. S., Li J., O'Neill S. D. Ovule development: identification of stage-specific and tissue-specific cDNAs. Plant Cell. 1996 Feb;8(2):213–239. doi: 10.1105/tpc.8.2.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nuss D. L. Biological control of chestnut blight: an example of virus-mediated attenuation of fungal pathogenesis. Microbiol Rev. 1992 Dec;56(4):561–576. doi: 10.1128/mr.56.4.561-576.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Paradies I., Konze J. R., Elstner E. F. Ethylene: indicator but not inducer of phytoalexin synthesis in soybean. Plant Physiol. 1980 Dec;66(6):1106–1109. doi: 10.1104/pp.66.6.1106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Peña-Cortés H., Fisahn J., Willmitzer L. Signals involved in wound-induced proteinase inhibitor II gene expression in tomato and potato plants. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4106–4113. doi: 10.1073/pnas.92.10.4106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schaffer M. A., Fischer R. L. Analysis of mRNAs that Accumulate in Response to Low Temperature Identifies a Thiol Protease Gene in Tomato. Plant Physiol. 1988 Jun;87(2):431–436. doi: 10.1104/pp.87.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Shapira R., Nuss D. L. Gene expression by a hypovirulence-associated virus of the chestnut blight fungus involves two papain-like protease activities. Essential residues and cleavage site requirements for p48 autoproteolysis. J Biol Chem. 1991 Oct 15;266(29):19419–19425. [PubMed] [Google Scholar]
  35. Turk V., Bode W. The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett. 1991 Jul 22;285(2):213–219. doi: 10.1016/0014-5793(91)80804-c. [DOI] [PubMed] [Google Scholar]
  36. Urwin P. E., Atkinson H. J., Waller D. A., McPherson M. J. Engineered oryzacystatin-I expressed in transgenic hairy roots confers resistance to Globodera pallida. Plant J. 1995 Jul;8(1):121–131. doi: 10.1046/j.1365-313x.1995.08010121.x. [DOI] [PubMed] [Google Scholar]
  37. Waldron C., Wegrich L. M., Merlo P. A., Walsh T. A. Characterization of a genomic sequence coding for potato multicystatin, an eight-domain cysteine proteinase inhibitor. Plant Mol Biol. 1993 Nov;23(4):801–812. doi: 10.1007/BF00021535. [DOI] [PubMed] [Google Scholar]
  38. Walsh T. A., Strickland J. A. Proteolysis of the 85-kilodalton crystalline cysteine proteinase inhibitor from potato releases functional cystatin domains. Plant Physiol. 1993 Dec;103(4):1227–1234. doi: 10.1104/pp.103.4.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Weiss C., Bevan M. Ethylene and a Wound Signal Modulate Local and Systemic Transcription of win2 Genes in Transgenic Potato Plants. Plant Physiol. 1991 Jul;96(3):943–951. doi: 10.1104/pp.96.3.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wilson K. A., Papastoitsis G., Hartl P., Tan-Wilson A. L. Survey of the Proteolytic Activities Degrading the Kunitz Trypsin Inhibitor and Glycinin in Germinating Soybeans (Glycine max). Plant Physiol. 1988 Oct;88(2):355–360. doi: 10.1104/pp.88.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Xu Y., Chang PFL., Liu D., Narasimhan M. L., Raghothama K. G., Hasegawa P. M., Bressan R. A. Plant Defense Genes Are Synergistically Induced by Ethylene and Methyl Jasmonate. Plant Cell. 1994 Aug;6(8):1077–1085. doi: 10.1105/tpc.6.8.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zhao Y., Botella M. A., Subramanian L., Niu X., Nielsen S. S., Bressan R. A., Hasegawa P. M. Two wound-inducible soybean cysteine proteinase inhibitors have greater insect digestive proteinase inhibitory activities than a constitutive homolog. Plant Physiol. 1996 Aug;111(4):1299–1306. doi: 10.1104/pp.111.4.1299. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES