Abstract
We introduced a full-length cDNA sequence encoding tobacco (Nicotiana tabacum) uroporphyrinogen III decarboxylase (UROD; EC 4.1.1.37) in reverse orientation under the control of a cauliflower mosaic virus 35S promoter derivative into the tobacco genome to study the effects of deregulated UROD expression on tetrapyrrole biosynthesis. Transformants with reduced UROD activity were characterized by stunted plant growth and necrotic leaf lesions. Antisense RNA expression caused reduced UROD protein levels and reduced activity to 45% of wild type, which was correlated with the accumulation of uroporphyrin(ogen) and with the intensity of necrotic damage. Chlorophyll levels were only slightly reduced (up to 15%), indicating that the plants sustained cellular damage from accumulating photosensitive porphyrins rather than from chlorophyll deficiency. A 16-h light/8-h dark regime at high-light intensity stimulates the formation of leaf necrosis compared with a low-light or a 6-h high-light treatment. Transgenic plants grown at high light also showed inactivation of 5-aminolevulinate dehydratase and porphobilinogen deaminase, whereas the activity of coproporphyrinogen oxidase and the 5-aminolevulinate synthesizing capacity were not altered. We conclude that photooxidation of accumulating uroporphyrin(ogen) leads to the generation of oxygen species, which destabilizes other enzymes in the porphyrin metabolic pathway. This porphyrin-induced necrosis resembles the induction of cell death observed during pathogenesis and air pollution.
Full Text
The Full Text of this article is available as a PDF (2.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Afonso S. G., Chinarro S., Enriquez de Salamanca R., Batlle A. M. How the atmosphere and the presence of substrate affect the photo and non-photoinactivation of heme enzymes by uroporphyrin I. Int J Biochem. 1994 Feb;26(2):259–262. doi: 10.1016/0020-711x(94)90154-6. [DOI] [PubMed] [Google Scholar]
- Afonso S. G., Chinarro S., Muñoz J. J., de Salamanca R. E., Batlle A. M. Photodynamic and non-photodynamic action of several porphyrins on the activity of some heme-enzymes. J Enzyme Inhib. 1990;3(4):303–310. doi: 10.3109/14756369009030379. [DOI] [PubMed] [Google Scholar]
- Afonso S. G., Chinarro S., de Salamanca R. E., Batlle A. M. Further evidence on the photodynamic and the novel non-photodynamic inactivation of uroporphyrinogen decarboxylase by uroporphyrin I. J Enzyme Inhib. 1991;5(3):225–233. doi: 10.3109/14756369109080061. [DOI] [PubMed] [Google Scholar]
- Arakane K., Ryu A., Hayashi C., Masunaga T., Shinmoto K., Mashiko S., Nagano T., Hirobe M. Singlet oxygen (1 delta g) generation from coproporphyrin in Propionibacterium acnes on irradiation. Biochem Biophys Res Commun. 1996 Jun 25;223(3):578–582. doi: 10.1006/bbrc.1996.0937. [DOI] [PubMed] [Google Scholar]
- Green R., Fluhr R. UV-B-Induced PR-1 Accumulation Is Mediated by Active Oxygen Species. Plant Cell. 1995 Feb;7(2):203–212. doi: 10.1105/tpc.7.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iinuma S., Farshi S. S., Ortel B., Hasan T. A mechanistic study of cellular photodestruction with 5-aminolaevulinic acid-induced porphyrin. Br J Cancer. 1994 Jul;70(1):21–28. doi: 10.1038/bjc.1994.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kruse E., Mock H. P., Grimm B. Reduction of coproporphyrinogen oxidase level by antisense RNA synthesis leads to deregulated gene expression of plastid proteins and affects the oxidative defense system. EMBO J. 1995 Aug 1;14(15):3712–3720. doi: 10.1002/j.1460-2075.1995.tb00041.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kurlandzka A., Zoladek T., Rytka J., Labbe-Bois R., Urban-Grimal D. The effects in vivo of mutationally modified uroporphyrinogen decarboxylase in different hem12 mutants of baker's yeast (Saccharomyces cerevisiae). Biochem J. 1988 Jul 1;253(1):109–116. doi: 10.1042/bj2530109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lim C. K., Rideout J. M., Wright D. J. Separation of porphyrin isomers by high-performance liquid chromatography. Biochem J. 1983 May 1;211(2):435–438. doi: 10.1042/bj2110435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mock H. P., Trainotti L., Kruse E., Grimm B. Isolation, sequencing and expression of cDNA sequences encoding uroporphyrinogen decarboxylase from tobacco and barley. Plant Mol Biol. 1995 May;28(2):245–256. doi: 10.1007/BF00020244. [DOI] [PubMed] [Google Scholar]
- Pahl H. L., Baeuerle P. A. Oxygen and the control of gene expression. Bioessays. 1994 Jul;16(7):497–502. doi: 10.1002/bies.950160709. [DOI] [PubMed] [Google Scholar]
- Schneegurt M. A., Beale S. I. Biosynthesis of protoheme and heme a from glutamate in maize. Plant Physiol. 1986 Aug;81(4):965–971. doi: 10.1104/pp.81.4.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith A. G., Francis J. E. Investigations of rat liver uroporphyrinogen decarboxylase. Comparisons of porphyrinogens I and III as substrates and the inhibition by porphyrins. Biochem J. 1981 Apr 1;195(1):241–250. doi: 10.1042/bj1950241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith A. G., Marsh O., Elder G. H. Investigation of the subcellular location of the tetrapyrrole-biosynthesis enzyme coproporphyrinogen oxidase in higher plants. Biochem J. 1993 Jun 1;292(Pt 2):503–508. doi: 10.1042/bj2920503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith A. G. Subcellular localization of two porphyrin-synthesis enzymes in Pisum sativum (pea) and Arum (cuckoo-pint) species. Biochem J. 1988 Jan 15;249(2):423–428. doi: 10.1042/bj2490423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Săsărman A., Chartrand P., Proschek R., Desrochers M., Tardif D., Lapointe C. Uroporphyrin-accumulating mutant of Escherichia coli K-12. J Bacteriol. 1975 Dec;124(3):1205–1212. doi: 10.1128/jb.124.3.1205-1212.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Von Wettstein D., Gough S., Kannangara C. G. Chlorophyll Biosynthesis. Plant Cell. 1995 Jul;7(7):1039–1057. doi: 10.1105/tpc.7.7.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WESTALL R. G. Isolation of porphobilinogen from the urine of a patient with acute porphyria. Nature. 1952 Oct 11;170(4328):614–616. doi: 10.1038/170614a0. [DOI] [PubMed] [Google Scholar]
- Weinstein J. D., Beale S. I. Separate physiological roles and subcellular compartments for two tetrapyrrole biosynthetic pathways in Euglena gracilis. J Biol Chem. 1983 Jun 10;258(11):6799–6807. [PubMed] [Google Scholar]
- Zoładek T., Chełstowska A., Labbe-Bois R., Rytka J. Isolation and characterization of extragenic mutations affecting the expression of the uroporphyrinogen decarboxylase gene (HEM12) in Sacharomyces cerevisiae. Mol Gen Genet. 1995 May 20;247(4):471–481. doi: 10.1007/BF00293149. [DOI] [PubMed] [Google Scholar]