Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Aug;114(4):1501–1509. doi: 10.1104/pp.114.4.1501

Ethylene Sensitivity and Response Sensor Expression in Petioles of Rumex Species at Low O2 and High CO2 Concentrations.

LACJ Voesenek 1, W H Vriezen 1, MJE Smekens 1, FHM Huitink 1, G M Bogemann 1, CWPM Blom 1
PMCID: PMC158444  PMID: 12223784

Abstract

Rumex palustris, a flooding-tolerant plant, elongates its petioles in response to complete submergence. This response can be partly mimicked by enhanced ethylene levels and low O2 concentrations. High levels of CO2 do not markedly affect petiole elongation in R. palustris. Experiments with ethylene synthesis and action inhibitors demonstrate that treatment with low O2 concentrations enhances petiole extension by shifting sensitivity to ethylene without changing the rate of ethylene production. The expression level of the R. palustris gene coding for the putative ethylene receptor (RP-ERS1) is up-regulated by 3% O2 and increases after 20 min of exposure to a low concentration of O2, thus preceding the first significant increase in elongation observable after 40 to 50 min. In the flooding-sensitive species Rumex acetosa, submergence results in a different response pattern: petiole growth of the submerged plants is the same as for control plants. Exposure of R. acetosa to enhanced ethylene levels strongly inhibits petiole growth. This inhibitory effect of ethylene on R. acetosa can be reduced by both low levels of O2 and/or high concentrations of CO2.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beyer E. M. Effect of silver ion, carbon dioxide, and oxygen on ethylene action and metabolism. Plant Physiol. 1979 Jan;63(1):169–173. doi: 10.1104/pp.63.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bleecker A. B., Schaller G. E. The Mechanism of Ethylene Perception. Plant Physiol. 1996 Jul;111(3):653–660. doi: 10.1104/pp.111.3.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burg S. P., Burg E. A. Molecular requirements for the biological activity of ethylene. Plant Physiol. 1967 Jan;42(1):144–152. doi: 10.1104/pp.42.1.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chang C., Meyerowitz E. M. The ethylene hormone response in Arabidopsis: a eukaryotic two-component signaling system. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4129–4133. doi: 10.1073/pnas.92.10.4129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chang C. The ethylene signal transduction pathway in Arabidopsis: an emerging paradigm? Trends Biochem Sci. 1996 Apr;21(4):129–133. [PubMed] [Google Scholar]
  6. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cohen E., Kende H. In vivo 1-aminocyclopropane-1-carboxylate synthase activity in internodes of deepwater rice : enhancement by submergence and low oxygen levels. Plant Physiol. 1987 Jun;84(2):282–286. doi: 10.1104/pp.84.2.282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goldberg R. B., Hoschek G., Tam S. H., Ditta G. S., Breidenbach R. W. Abundance, diversity, and regulation of mRNA sequence sets in soybean embryogenesis. Dev Biol. 1981 Apr 30;83(2):201–217. doi: 10.1016/0012-1606(81)90467-x. [DOI] [PubMed] [Google Scholar]
  9. Métraux J. P., Kende H. The role of ethylene in the growth response of submerged deep water rice. Plant Physiol. 1983 Jun;72(2):441–446. doi: 10.1104/pp.72.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Payton S., Fray R. G., Brown S., Grierson D. Ethylene receptor expression is regulated during fruit ripening, flower senescence and abscission. Plant Mol Biol. 1996 Sep;31(6):1227–1231. doi: 10.1007/BF00040839. [DOI] [PubMed] [Google Scholar]
  11. Raskin I., Kende H. Role of gibberellin in the growth response of submerged deep water rice. Plant Physiol. 1984 Dec;76(4):947–950. doi: 10.1104/pp.76.4.947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Satler S. O., Kende H. Ethylene and the growth of rice seedlings. Plant Physiol. 1985 Sep;79(1):194–198. doi: 10.1104/pp.79.1.194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Vriezen W. H., van Rijn C. P., Voesenek L. A., Mariani C. A homolog of the Arabidopsis thaliana ERS gene is actively regulated in Rumex palustris upon flooding. Plant J. 1997 Jun;11(6):1265–1271. doi: 10.1046/j.1365-313x.1997.11061265.x. [DOI] [PubMed] [Google Scholar]
  14. Wilkinson J. Q., Lanahan M. B., Yen H. C., Giovannoni J. J., Klee H. J. An ethylene-inducible component of signal transduction encoded by never-ripe. Science. 1995 Dec 15;270(5243):1807–1809. doi: 10.1126/science.270.5243.1807. [DOI] [PubMed] [Google Scholar]
  15. Zhang-Keck Z. Y., Srivastava M., Kozak C. A., Caohuy H., Shirvan A., Burns A. L., Pollard H. B. Genomic organization and chromosomal localization of the mouse synexin gene. Biochem J. 1994 Aug 1;301(Pt 3):835–845. doi: 10.1042/bj3010835. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES