Abstract
We characterized the effects of light on psbD transcription and mRNA levels during chloroplast development in Arabidopsis thaliana. After 6 to 12 hours of illumination of dark-grown seedlings, two psbD mRNAs were detected and their 5' ends were mapped to positions -550 and -190 bp upstream from the psbD translational start codon. Their kinetics of accumulation resembled the accumulation of chloroplast psbA and rbcL mRNAs but differed from the accumulation of the nuclear-encoded Lhcb and Chs mRNAs. A third psbD mRNA with its 5' ends at position -950 accumulated after illumination of > 180 h. The 5' ends of this transcript were mapped to a nucleotide sequence that is highly conserved with functional sequences in the barley (Hordeum vulgare) blue-light-responsive promoter (BLRP). Transcription from the Arabidopsis psbD promoter was 3-fold higher in blue relative to red light, whereas red and blue light affected total chloroplast, rbcL, and 16S rDNA transcription similarly. This study shows that transcription of Arabidopsis psbD is mediated by a BLRP and suggests that psbD genes in other land plants are regulated by a common blue-light-signaling pathway. Isolating the BLRP from Arabidopsis will allow molecular genetic studies aimed at identifying the pertinent photoreceptor and components of this phototransduction pathway.
Full Text
The Full Text of this article is available as a PDF (2.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allison L. A., Maliga P. Light-responsive and transcription-enhancing elements regulate the plastid psbD core promoter. EMBO J. 1995 Aug 1;14(15):3721–3730. doi: 10.1002/j.1460-2075.1995.tb00042.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aro E. M., Virgin I., Andersson B. Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta. 1993 Jul 5;1143(2):113–134. doi: 10.1016/0005-2728(93)90134-2. [DOI] [PubMed] [Google Scholar]
- Barber J., Andersson B. Too much of a good thing: light can be bad for photosynthesis. Trends Biochem Sci. 1992 Feb;17(2):61–66. doi: 10.1016/0968-0004(92)90503-2. [DOI] [PubMed] [Google Scholar]
- Baumgartner B. J., Rapp J. C., Mullet J. E. Plastid Genes Encoding the Transcription/Translation Apparatus Are Differentially Transcribed Early in Barley (Hordeum vulgare) Chloroplast Development (Evidence for Selective Stabilization of psbA mRNA). Plant Physiol. 1993 Mar;101(3):781–791. doi: 10.1104/pp.101.3.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berends Sexton T., Jones J. T., Mullet J. E. Sequence and transcriptional analysis of the barley ctDNA region upstream of psbD-psbC encoding trnK(UUU), rps16, trnQ(UUG), psbK, psbI, and trnS(GCU). Curr Genet. 1990 May;17(5):445–454. doi: 10.1007/BF00334526. [DOI] [PubMed] [Google Scholar]
- Bergsland K. J., Haselkorn R. Evolutionary relationships among eubacteria, cyanobacteria, and chloroplasts: evidence from the rpoC1 gene of Anabaena sp. strain PCC 7120. J Bacteriol. 1991 Jun;173(11):3446–3455. doi: 10.1128/jb.173.11.3446-3455.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brusslan J. A., Tobin E. M. Light-independent developmental regulation of cab gene expression in Arabidopsis thaliana seedlings. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7791–7795. doi: 10.1073/pnas.89.16.7791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bukharov A. A., Kolosov V. L., Klezovich O. N., Zolotarev A. S. Nucleotide sequence of rye chloroplast DNA fragment, comprising psbD, psbC and trnS genes. Nucleic Acids Res. 1989 Jan 25;17(2):798–798. doi: 10.1093/nar/17.2.798. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christopher D. A., Kim M., Mullet J. E. A novel light-regulated promoter is conserved in cereal and dicot chloroplasts. Plant Cell. 1992 Jul;4(7):785–798. doi: 10.1105/tpc.4.7.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christopher D. A., Li X., Kim M., Mullet J. E. Involvement of protein kinase and extraplastidic serine/threonine protein phosphatases in signaling pathways regulating plastid transcription and the psbD blue light-responsive promoter in barley. Plant Physiol. 1997 Apr;113(4):1273–1282. doi: 10.1104/pp.113.4.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christopher D. A., Mullet J. E. Separate photosensory pathways co-regulate blue light/ultraviolet-A-activated psbD-psbC transcription and light-induced D2 and CP43 degradation in barley (Hordeum vulgare) chloroplasts. Plant Physiol. 1994 Apr;104(4):1119–1129. doi: 10.1104/pp.104.4.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DuBell A. N., Mullet J. E. Differential Transcription of Pea Chloroplast Genes during Light-Induced Leaf Development (Continuous Far-Red Light Activates Chloroplast Transcription). Plant Physiol. 1995 Sep;109(1):105–112. doi: 10.1104/pp.109.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gao J., Kaufman L. S. Blue-Light Regulation of the Arabidopsis thaliana Cab1 Gene. Plant Physiol. 1994 Apr;104(4):1251–1257. doi: 10.1104/pp.104.4.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hiratsuka J., Shimada H., Whittier R., Ishibashi T., Sakamoto M., Mori M., Kondo C., Honji Y., Sun C. R., Meng B. Y. The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet. 1989 Jun;217(2-3):185–194. doi: 10.1007/BF02464880. [DOI] [PubMed] [Google Scholar]
- Holschuh K., Bottomley W., Whitfeld P. R. Structure of the spinach chloroplast genes for the D2 and 44 kd reaction-centre proteins of photosystem II and for tRNASer (UGA). Nucleic Acids Res. 1984 Dec 11;12(23):8819–8834. doi: 10.1093/nar/12.23.8819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howe C. J., Barker R. F., Bowman C. M., Dyer T. A. Common features of three inversions in wheat chloroplast DNA. Curr Genet. 1988 Apr;13(4):343–349. doi: 10.1007/BF00424430. [DOI] [PubMed] [Google Scholar]
- Jansen M. A., Depka B., Trebst A., Edelman M. Engagement of specific sites in the plastoquinone niche regulates degradation of the D1 protein in photosystem II. J Biol Chem. 1993 Oct 5;268(28):21246–21252. [PubMed] [Google Scholar]
- Kim M., Christopher D. A., Mullet J. E. Direct evidence for selective modulation of psbA, rpoA, rbcL and 16S RNA stability during barley chloroplast development. Plant Mol Biol. 1993 Jun;22(3):447–463. doi: 10.1007/BF00015975. [DOI] [PubMed] [Google Scholar]
- Kubasek W. L., Shirley B. W., McKillop A., Goodman H. M., Briggs W., Ausubel F. M. Regulation of Flavonoid Biosynthetic Genes in Germinating Arabidopsis Seedlings. Plant Cell. 1992 Oct;4(10):1229–1236. doi: 10.1105/tpc.4.10.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuntz M., Weil J. H., Steinmetz A. Nucleotide sequence of a 2 kbp BamH I fragment of Vicia faba chloroplast DNA containing the genes for threonine, glutamic acid and tyrosine transfer RNAs. Nucleic Acids Res. 1984 Jun 25;12(12):5037–5047. doi: 10.1093/nar/12.12.5037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindahl L., Zengel J. M. Ribosomal genes in Escherichia coli. Annu Rev Genet. 1986;20:297–326. doi: 10.1146/annurev.ge.20.120186.001501. [DOI] [PubMed] [Google Scholar]
- Maier R. M., Neckermann K., Igloi G. L., Kössel H. Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol. 1995 Sep 1;251(5):614–628. doi: 10.1006/jmbi.1995.0460. [DOI] [PubMed] [Google Scholar]
- Mathews D. E., Durbin R. D. Tagetitoxin inhibits RNA synthesis directed by RNA polymerases from chloroplasts and Escherichia coli. J Biol Chem. 1990 Jan 5;265(1):493–498. [PubMed] [Google Scholar]
- Mullet J. E. Dynamic regulation of chloroplast transcription. Plant Physiol. 1993 Oct;103(2):309–313. doi: 10.1104/pp.103.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mullet J. E., Klein P. G., Klein R. R. Chlorophyll regulates accumulation of the plastid-encoded chlorophyll apoproteins CP43 and D1 by increasing apoprotein stability. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4038–4042. doi: 10.1073/pnas.87.11.4038. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmer J. D. Contrasting modes and tempos of genome evolution in land plant organelles. Trends Genet. 1990 Apr;6(4):115–120. doi: 10.1016/0168-9525(90)90125-p. [DOI] [PubMed] [Google Scholar]
- Rapp J. C., Baumgartner B. J., Mullet J. Quantitative analysis of transcription and RNA levels of 15 barley chloroplast genes. Transcription rates and mRNA levels vary over 300-fold; predicted mRNA stabilities vary 30-fold. J Biol Chem. 1992 Oct 25;267(30):21404–21411. [PubMed] [Google Scholar]
- Rasmussen O., Jepsen B., Stummann B., Henningsen K. W. Nucleotide sequence of the pea chloroplast tRNA-Thr(GGU) gene and flanking regions. Comparison to the Vicia faba sequence. Nucleic Acids Res. 1987 Jan 26;15(2):854–854. doi: 10.1093/nar/15.2.854. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schuster G., Timberg R., Ohad I. Turnover of thylakoid photosystem II proteins during photoinhibition of Chlamydomonas reinhardtii. Eur J Biochem. 1988 Nov 1;177(2):403–410. doi: 10.1111/j.1432-1033.1988.tb14389.x. [DOI] [PubMed] [Google Scholar]
- Sexton T. B., Christopher D. A., Mullet J. E. Light-induced switch in barley psbD-psbC promoter utilization: a novel mechanism regulating chloroplast gene expression. EMBO J. 1990 Dec;9(13):4485–4494. doi: 10.1002/j.1460-2075.1990.tb07899.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shinozaki K., Ohme M., Tanaka M., Wakasugi T., Hayashida N., Matsubayashi T., Zaita N., Chunwongse J., Obokata J., Yamaguchi-Shinozaki K. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 1986 Sep;5(9):2043–2049. doi: 10.1002/j.1460-2075.1986.tb04464.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wada T., Tunoyama Y., Shiina T., Toyoshima Y. In Vitro Analysis of Light-Induced Transcription in the Wheat psbD/C Gene Cluster Using Plastid Extracts from Dark-Grown and Short-Term-Illuminated Seedlings. Plant Physiol. 1994 Apr;104(4):1259–1267. doi: 10.1104/pp.104.4.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolfe K. H., Morden C. W., Palmer J. D. Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10648–10652. doi: 10.1073/pnas.89.22.10648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou D. X., Quigley F., Massenet O., Mache R. Cotranscription of the S10- and spc-like operons in spinach chloroplasts and identification of three of their gene products. Mol Gen Genet. 1989 Apr;216(2-3):439–445. doi: 10.1007/BF00334388. [DOI] [PubMed] [Google Scholar]
