Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Oct;103(2):449–456. doi: 10.1104/pp.103.2.449

Evidence for a Single Naphthylphthalamic Acid Binding Site on the Zucchini Plasma Membrane.

G K Muday 1, S A Brunn 1, P Haworth 1, M Subramanian 1
PMCID: PMC159003  PMID: 12231953

Abstract

The binding of [2,3,4,5,(n)-3H]N-1-napthylphthalamicacid ([3H]-NPA) to zucchini (Cucurbita pepo L.) plasma membranes was examined in detail using two different filtration assays and the results were rigorously analyzed by saturation curves, double-reciprocal plots, Scatchard plots, Hill plots, and the computer program Ligand (P.J. Munson, D. Rodbard [1980] Anal Biochem 107: 220-239). To facilitate these analyses, a new assay that allows rapid and quantitative analysis of [3H]NPA binding with high reproducibility and ease of manipulation has been developed. These detailed kinetic analyses indicate that only one binding site for [3H]NPA (Kd = 16 nM) was associated with the zucchini plasma membrane. Analysis of [3H]NPA dissociation by several auxin transport inhibitors revealed similar dissociation constants with both plasma and microsomal membrane. Collectively, these data indicate the presence of only one binding site for NPA associated with the zucchini plasma membrane.

Full Text

The Full Text of this article is available as a PDF (769.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brunn S. A., Muday G. K., Haworth P. Auxin transport and the interaction of phytotropins: probing the properties of a phytotropin binding protein. Plant Physiol. 1992 Jan;98(1):101–107. doi: 10.1104/pp.98.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bruns R. F., Lawson-Wendling K., Pugsley T. A. A rapid filtration assay for soluble receptors using polyethylenimine-treated filters. Anal Biochem. 1983 Jul 1;132(1):74–81. doi: 10.1016/0003-2697(83)90427-x. [DOI] [PubMed] [Google Scholar]
  3. Dahlquist F. W. The meaning of Scatchard and Hill plots. Methods Enzymol. 1978;48:270–299. doi: 10.1016/s0076-6879(78)48015-2. [DOI] [PubMed] [Google Scholar]
  4. Gallagher S. R., Leonard R. T. Effect of vanadate, molybdate, and azide on membrane-associated ATPase and soluble phosphatase activities of corn roots. Plant Physiol. 1982 Nov;70(5):1335–1340. doi: 10.1104/pp.70.5.1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jacobs M., Gilbert S. F. Basal localization of the presumptive auxin transport carrier in pea stem cells. Science. 1983 Jun 17;220(4603):1297–1300. doi: 10.1126/science.220.4603.1297. [DOI] [PubMed] [Google Scholar]
  6. Jacobs M., Rubery P. H. Naturally occurring auxin transport regulators. Science. 1988 Jul 15;241(4863):346–349. doi: 10.1126/science.241.4863.346. [DOI] [PubMed] [Google Scholar]
  7. Katekar G. F., Navé J. F., Geissler A. E. Phytotropins: III. NAPHTHYLPHTHALAMIC ACID BINDING SITES ON MAIZE COLEOPTILE MEMBRANES AS POSSIBLE RECEPTOR SITES FOR PHYTOTROPIN ACTION. Plant Physiol. 1981 Dec;68(6):1460–1464. doi: 10.1104/pp.68.6.1460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Li Y., Hagen G., Guilfoyle T. J. An Auxin-Responsive Promoter Is Differentially Induced by Auxin Gradients during Tropisms. Plant Cell. 1991 Nov;3(11):1167–1175. doi: 10.1105/tpc.3.11.1167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lomax T. L., Mehlhorn R. J., Briggs W. R. Active auxin uptake by zucchini membrane vesicles: quantitation using ESR volume and delta pH determinations. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6541–6545. doi: 10.1073/pnas.82.19.6541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  11. Parker K. E., Briggs W. R. Transport of indoleacetic Acid in intact corn coleoptiles. Plant Physiol. 1990 Oct;94(2):417–423. doi: 10.1104/pp.94.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rubery P. H. Phytotropins: receptors and endogenous ligands. Symp Soc Exp Biol. 1990;44:119–146. [PubMed] [Google Scholar]
  13. Sussman M. R., Gardner G. Solubilization of the receptor for N-1-naphthylphthalamic Acid. Plant Physiol. 1980 Dec;66(6):1074–1078. doi: 10.1104/pp.66.6.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Suttle J. C. Biochemical Bases for the Loss of Basipetal IAA Transport with Advancing Physiological Age in Etiolated Helianthus Hypocotyls: Changes in IAA Movement, Net IAA Uptake, and Phytotropin Binding. Plant Physiol. 1991 Jul;96(3):875–880. doi: 10.1104/pp.96.3.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Suttle J. C. Effect of Ethylene Treatment on Polar IAA Transport, Net IAA Uptake and Specific Binding of N-1-Naphthylphthalamic Acid in Tissues and Microsomes Isolated from Etiolated Pea Epicotyls. Plant Physiol. 1988 Nov;88(3):795–799. doi: 10.1104/pp.88.3.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Weiland G. A., Molinoff P. B. Quantitative analysis of drug-receptor interactions: I. Determination of kinetic and equilibrium properties. Life Sci. 1981 Jul 27;29(4):313–330. doi: 10.1016/0024-3205(81)90324-6. [DOI] [PubMed] [Google Scholar]
  17. Zettl R., Feldwisch J., Boland W., Schell J., Palme K. 5'-Azido-[3,6-3H2]-1-napthylphthalamic acid, a photoactivatable probe for naphthylphthalamic acid receptor proteins from higher plants: identification of a 23-kDa protein from maize coleoptile plasma membranes. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):480–484. doi: 10.1073/pnas.89.2.480. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES