Skip to main content
Archives of Disease in Childhood logoLink to Archives of Disease in Childhood
. 1989 Jul;64(7 Spec No):949–952. doi: 10.1136/adc.64.7_spec_no.949

Endogenous formation of prostanoids in neonates with persistent pulmonary hypertension.

P G Kühl 1, R B Cotton 1, H Schweer 1, H W Seyberth 1
PMCID: PMC1590079  PMID: 2673060

Abstract

Endogenous formation of thromboxane A2 and prostacyclin were evaluated in seven neonatates with persistent pulmonary hypertension by serial gas chromatographic mass spectrometric determination of their urinary metabolites dinor-thromboxane B2 and dinor-6-keto-prostaglandin F1 alpha, respectively. The patients were studied until their hypertension had resolved on clinical criteria. Urinary excretion of dinor-thromboxane B2 and dinor-6-keto-prostaglandin F1 alpha was increased when the persistent pulmonary hypertension was associated with group B streptococcal (n = 2) and pneumococcal (n = 1) sepsis. Based on urinary metabolite excretion, endogenous formation of thromboxane A2 and prostacyclin did not consistently differ from normal neonates in four patients with non-septic persistent pulmonary hypertension (hyaline membrane disease (n = 2), asphyxia, and meconium aspiration). These data suggest that thromboxane A2 is not a universal mediator of persistent pulmonary hypertension. It may, however, have a role in the pathophysiology of early onset group B streptococcal disease, and persistent pulmonary hypertension of other infectious aetiology. If these findings are confirmed by further studies, thromboxane synthetase inhibition or receptor antagonism may offer a potential therapeutic approach in neonates with persistent pulmonary hypertension associated with sepsis.

Full text

PDF
950

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brigham K. L., Meyrick B. Endotoxin and lung injury. Am Rev Respir Dis. 1986 May;133(5):913–927. [PubMed] [Google Scholar]
  2. FitzGerald G. A., Healy C., Daugherty J. Thromboxane A2 biosynthesis in human disease. Fed Proc. 1987 Jan;46(1):154–158. [PubMed] [Google Scholar]
  3. FitzGerald G. A., Pedersen A. K., Patrono C. Analysis of prostacyclin and thromboxane biosynthesis in cardiovascular disease. Circulation. 1983 Jun;67(6):1174–1177. doi: 10.1161/01.cir.67.6.1174. [DOI] [PubMed] [Google Scholar]
  4. Ford W. D., James M. J., Walsh J. A. Congenital diaphragmatic hernia: association between pulmonary vascular resistance and plasma thromboxane concentrations. Arch Dis Child. 1984 Feb;59(2):143–146. doi: 10.1136/adc.59.2.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fox W. W., Duara S. Persistent pulmonary hypertension in the neonate: diagnosis and management. J Pediatr. 1983 Oct;103(4):505–514. doi: 10.1016/s0022-3476(83)80573-3. [DOI] [PubMed] [Google Scholar]
  6. Hammerman C., Komar K., Abu-Khudair H. Hypoxic vs septic pulmonary hypertension. Selective role of thromboxane mediation. Am J Dis Child. 1988 Mar;142(3):319–325. doi: 10.1001/archpedi.1988.02150030093030. [DOI] [PubMed] [Google Scholar]
  7. Hammerman C., Lass N., Strates E., Komar K., Bui K. C. Prostanoids in neonates with persistent pulmonary hypertension. J Pediatr. 1987 Mar;110(3):470–472. doi: 10.1016/s0022-3476(87)80520-6. [DOI] [PubMed] [Google Scholar]
  8. Kuehl P. G., Cotton R. B., FitzGerald G. A. Systemic production of prostacyclin and thromboxane A2 does not correlate with patency of the ductus arteriosus in very low birth weight infants. J Pediatr. 1986 Jun;108(6):977–982. doi: 10.1016/s0022-3476(86)80943-x. [DOI] [PubMed] [Google Scholar]
  9. Kühl P. G., Bolds J. M., Loyd J. E., Snapper J. R., FitzGerald G. A. Thromboxane receptor-mediated bronchial and hemodynamic responses in ovine endotoxemia. Am J Physiol. 1988 Feb;254(2 Pt 2):R310–R319. doi: 10.1152/ajpregu.1988.254.2.R310. [DOI] [PubMed] [Google Scholar]
  10. Patrono C., Ciabattoni G., Pugliese F., Pierucci A., Blair I. A., FitzGerald G. A. Estimated rate of thromboxane secretion into the circulation of normal humans. J Clin Invest. 1986 Feb;77(2):590–594. doi: 10.1172/JCI112341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rojas J., Larsson L. E., Ogletree M. L., Brigham K. L., Stahlman M. T. Effects of cyclooxygenase inhibition on the response to group B streptococcal toxin in sheep. Pediatr Res. 1983 Feb;17(2):107–110. doi: 10.1203/00006450-198302000-00005. [DOI] [PubMed] [Google Scholar]
  12. Roy L., Knapp H. R., Robertson R. M., FitzGerald G. A. Endogenous biosynthesis of prostacyclin during cardiac catheterization and angiography in man. Circulation. 1985 Mar;71(3):434–440. doi: 10.1161/01.cir.71.3.434. [DOI] [PubMed] [Google Scholar]
  13. Runkle B., Goldberg R. N., Streitfeld M. M., Clark M. R., Buron E., Setzer E. S., Bancalari E. Cardiovascular changes in group B streptococcal sepsis in the piglet: response to indomethacin and relationship to prostacyclin and thromboxane A2. Pediatr Res. 1984 Sep;18(9):874–878. doi: 10.1203/00006450-198409000-00014. [DOI] [PubMed] [Google Scholar]
  14. Schweer H., Kammer J., Kühl P. G., Seyberth H. W. Determination of peripheral plasma prostanoid concentration: an unreliable index of 'in vivo' prostanoid activity. Eur J Clin Pharmacol. 1986;31(3):303–305. doi: 10.1007/BF00981128. [DOI] [PubMed] [Google Scholar]
  15. Seyberth H. W., Kühl P. G. The role of eicosanoids in paediatrics. Eur J Pediatr. 1988 May;147(4):341–349. doi: 10.1007/BF00496408. [DOI] [PubMed] [Google Scholar]
  16. Truog W. E., Sorensen G. K., Standaert T. A., Redding G. J. Effects of the thromboxane synthetase inhibitor, dazmegrel (UK 38,485), on pulmonary gas exchange and hemodynamics in neonatal sepsis. Pediatr Res. 1986 May;20(5):481–486. doi: 10.1203/00006450-198605000-00020. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood are provided here courtesy of BMJ Publishing Group

RESOURCES