Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 2001 Jul-Aug;199(Pt 1-2):153–159. doi: 10.1046/j.1469-7580.2001.19910153.x

Evolution and development of teeth

MELANIE McCOLLUM 1 , PAUL T SHARPE 2 ,
PMCID: PMC1594990  PMID: 11523817

Abstract

Teeth as a feeding mechanism in an oral cavity (mouth) are functionally and locationally linked with jaws. In fossils, teeth found in the oral cavity are usually linked with jaws, although mineralised structures with the same histology as teeth are known in fossils before jaws appeared. Denticles in the skin occur in both fossil and extant fish. Pharyngeal denticles also occur in both extant and fossil gnathostomes but in only a few fossil agnathans (thelodonts). Complex structures with dentine and enamel have been described in the earliest jawless vertebrates, conodonts. Such fossils have been used to suggest that teeth and jaws have evolved and developed independently. Our understanding of the developmental biology of mammalian tooth development has increased greatly in the last few years to a point where we now understand some of the basic genetic interactions controlling tooth initiation, morphogenesis and patterning. The aim of this review is to see what this developmental information can reveal about evolution of the dentition.

Keywords: Tooth development, homeobox, signalling

Full Text

The Full Text of this article is available as a PDF (210.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acampora D., Merlo G. R., Paleari L., Zerega B., Postiglione M. P., Mantero S., Bober E., Barbieri O., Simeone A., Levi G. Craniofacial, vestibular and bone defects in mice lacking the Distal-less-related gene Dlx5. Development. 1999 Sep;126(17):3795–3809. doi: 10.1242/dev.126.17.3795. [DOI] [PubMed] [Google Scholar]
  2. Attisano L., Wrana J. L. Mads and Smads in TGF beta signalling. Curr Opin Cell Biol. 1998 Apr;10(2):188–194. doi: 10.1016/s0955-0674(98)80141-5. [DOI] [PubMed] [Google Scholar]
  3. Barlow A. J., Bogardi J. P., Ladher R., Francis-West P. H. Expression of chick Barx-1 and its differential regulation by FGF-8 and BMP signaling in the maxillary primordia. Dev Dyn. 1999 Apr;214(4):291–302. doi: 10.1002/(SICI)1097-0177(199904)214:4<291::AID-AJA2>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  4. Depew M. J., Liu J. K., Long J. E., Presley R., Meneses J. J., Pedersen R. A., Rubenstein J. L. Dlx5 regulates regional development of the branchial arches and sensory capsules. Development. 1999 Sep;126(17):3831–3846. doi: 10.1242/dev.126.17.3831. [DOI] [PubMed] [Google Scholar]
  5. Ferguson C. A., Tucker A. S., Christensen L., Lau A. L., Matzuk M. M., Sharpe P. T. Activin is an essential early mesenchymal signal in tooth development that is required for patterning of the murine dentition. Genes Dev. 1998 Aug 15;12(16):2636–2649. doi: 10.1101/gad.12.16.2636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ferguson C. A., Tucker A. S., Sharpe P. T. Temporospatial cell interactions regulating mandibular and maxillary arch patterning. Development. 2000 Jan;127(2):403–412. doi: 10.1242/dev.127.2.403. [DOI] [PubMed] [Google Scholar]
  7. Francis-West P. H., Tatla T., Brickell P. M. Expression patterns of the bone morphogenetic protein genes Bmp-4 and Bmp-2 in the developing chick face suggest a role in outgrowth of the primordia. Dev Dyn. 1994 Oct;201(2):168–178. doi: 10.1002/aja.1002010207. [DOI] [PubMed] [Google Scholar]
  8. Francis-West P., Ladher R., Barlow A., Graveson A. Signalling interactions during facial development. Mech Dev. 1998 Jul;75(1-2):3–28. doi: 10.1016/s0925-4773(98)00082-3. [DOI] [PubMed] [Google Scholar]
  9. Gaunt S. J., Blum M., De Robertis E. M. Expression of the mouse goosecoid gene during mid-embryogenesis may mark mesenchymal cell lineages in the developing head, limbs and body wall. Development. 1993 Feb;117(2):769–778. doi: 10.1242/dev.117.2.769. [DOI] [PubMed] [Google Scholar]
  10. Grigoriou M., Tucker A. S., Sharpe P. T., Pachnis V. Expression and regulation of Lhx6 and Lhx7, a novel subfamily of LIM homeodomain encoding genes, suggests a role in mammalian head development. Development. 1998 Jun;125(11):2063–2074. doi: 10.1242/dev.125.11.2063. [DOI] [PubMed] [Google Scholar]
  11. Kratochwil K., Dull M., Farinas I., Galceran J., Grosschedl R. Lef1 expression is activated by BMP-4 and regulates inductive tissue interactions in tooth and hair development. Genes Dev. 1996 Jun 1;10(11):1382–1394. doi: 10.1101/gad.10.11.1382. [DOI] [PubMed] [Google Scholar]
  12. Lanctôt C., Lamolet B., Drouin J. The bicoid-related homeoprotein Ptx1 defines the most anterior domain of the embryo and differentiates posterior from anterior lateral mesoderm. Development. 1997 Jul;124(14):2807–2817. doi: 10.1242/dev.124.14.2807. [DOI] [PubMed] [Google Scholar]
  13. Lanctôt C., Moreau A., Chamberland M., Tremblay M. L., Drouin J. Hindlimb patterning and mandible development require the Ptx1 gene. Development. 1999 May;126(9):1805–1810. doi: 10.1242/dev.126.9.1805. [DOI] [PubMed] [Google Scholar]
  14. MacKenzie A., Ferguson M. W., Sharpe P. T. Expression patterns of the homeobox gene, Hox-8, in the mouse embryo suggest a role in specifying tooth initiation and shape. Development. 1992 Jun;115(2):403–420. doi: 10.1242/dev.115.2.403. [DOI] [PubMed] [Google Scholar]
  15. Mackenzie A., Leeming G. L., Jowett A. K., Ferguson M. W., Sharpe P. T. The homeobox gene Hox 7.1 has specific regional and temporal expression patterns during early murine craniofacial embryogenesis, especially tooth development in vivo and in vitro. Development. 1991 Feb;111(2):269–285. doi: 10.1242/dev.111.2.269. [DOI] [PubMed] [Google Scholar]
  16. Matzuk M. M., Kumar T. R., Vassalli A., Bickenbach J. R., Roop D. R., Jaenisch R., Bradley A. Functional analysis of activins during mammalian development. Nature. 1995 Mar 23;374(6520):354–356. doi: 10.1038/374354a0. [DOI] [PubMed] [Google Scholar]
  17. McCollum M. A. The robust australopithecine face: a morphogenetic perspective. Science. 1999 Apr 9;284(5412):301–305. doi: 10.1126/science.284.5412.301. [DOI] [PubMed] [Google Scholar]
  18. Osumi-Yamashita N., Ninomiya Y., Doi H., Eto K. The contribution of both forebrain and midbrain crest cells to the mesenchyme in the frontonasal mass of mouse embryos. Dev Biol. 1994 Aug;164(2):409–419. doi: 10.1006/dbio.1994.1211. [DOI] [PubMed] [Google Scholar]
  19. Qiu M., Bulfone A., Ghattas I., Meneses J. J., Christensen L., Sharpe P. T., Presley R., Pedersen R. A., Rubenstein J. L. Role of the Dlx homeobox genes in proximodistal patterning of the branchial arches: mutations of Dlx-1, Dlx-2, and Dlx-1 and -2 alter morphogenesis of proximal skeletal and soft tissue structures derived from the first and second arches. Dev Biol. 1997 May 15;185(2):165–184. doi: 10.1006/dbio.1997.8556. [DOI] [PubMed] [Google Scholar]
  20. Qiu M., Bulfone A., Martinez S., Meneses J. J., Shimamura K., Pedersen R. A., Rubenstein J. L. Null mutation of Dlx-2 results in abnormal morphogenesis of proximal first and second branchial arch derivatives and abnormal differentiation in the forebrain. Genes Dev. 1995 Oct 15;9(20):2523–2538. doi: 10.1101/gad.9.20.2523. [DOI] [PubMed] [Google Scholar]
  21. Rivera-Pérez J. A., Mallo M., Gendron-Maguire M., Gridley T., Behringer R. R. Goosecoid is not an essential component of the mouse gastrula organizer but is required for craniofacial and rib development. Development. 1995 Sep;121(9):3005–3012. doi: 10.1242/dev.121.9.3005. [DOI] [PubMed] [Google Scholar]
  22. Rivera-Pérez J. A., Wakamiya M., Behringer R. R. Goosecoid acts cell autonomously in mesenchyme-derived tissues during craniofacial development. Development. 1999 Sep;126(17):3811–3821. doi: 10.1242/dev.126.17.3811. [DOI] [PubMed] [Google Scholar]
  23. Satokata I., Maas R. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat Genet. 1994 Apr;6(4):348–356. doi: 10.1038/ng0494-348. [DOI] [PubMed] [Google Scholar]
  24. Sharpe P. T. Homeobox genes and orofacial development. Connect Tissue Res. 1995;32(1-4):17–25. doi: 10.3109/03008209509013701. [DOI] [PubMed] [Google Scholar]
  25. Smith M. M., Coates M. I. Evolutionary origins of the vertebrate dentition: phylogenetic patterns and developmental evolution. Eur J Oral Sci. 1998 Jan;106 (Suppl 1):482–500. doi: 10.1111/j.1600-0722.1998.tb02212.x. [DOI] [PubMed] [Google Scholar]
  26. Thesleff I., Sharpe P. Signalling networks regulating dental development. Mech Dev. 1997 Oct;67(2):111–123. doi: 10.1016/s0925-4773(97)00115-9. [DOI] [PubMed] [Google Scholar]
  27. Thomas B. L., Sharpe P. T. Patterning of the murine dentition by homeobox genes. Eur J Oral Sci. 1998 Jan;106 (Suppl 1):48–54. doi: 10.1111/j.1600-0722.1998.tb02153.x. [DOI] [PubMed] [Google Scholar]
  28. Thomas B. L., Tucker A. S., Qui M., Ferguson C. A., Hardcastle Z., Rubenstein J. L., Sharpe P. T. Role of Dlx-1 and Dlx-2 genes in patterning of the murine dentition. Development. 1997 Dec;124(23):4811–4818. doi: 10.1242/dev.124.23.4811. [DOI] [PubMed] [Google Scholar]
  29. Tucker A. S., Matthews K. L., Sharpe P. T. Transformation of tooth type induced by inhibition of BMP signaling. Science. 1998 Nov 6;282(5391):1136–1138. doi: 10.1126/science.282.5391.1136. [DOI] [PubMed] [Google Scholar]
  30. Tucker A. S., Sharpe P. T. Molecular genetics of tooth morphogenesis and patterning: the right shape in the right place. J Dent Res. 1999 Apr;78(4):826–834. doi: 10.1177/00220345990780040201. [DOI] [PubMed] [Google Scholar]
  31. Tucker A. S., Yamada G., Grigoriou M., Pachnis V., Sharpe P. T. Fgf-8 determines rostral-caudal polarity in the first branchial arch. Development. 1999 Jan;126(1):51–61. doi: 10.1242/dev.126.1.51. [DOI] [PubMed] [Google Scholar]
  32. Yamada G., Mansouri A., Torres M., Stuart E. T., Blum M., Schultz M., De Robertis E. M., Gruss P. Targeted mutation of the murine goosecoid gene results in craniofacial defects and neonatal death. Development. 1995 Sep;121(9):2917–2922. doi: 10.1242/dev.121.9.2917. [DOI] [PubMed] [Google Scholar]
  33. Zhao Y., Guo Y. J., Tomac A. C., Taylor N. R., Grinberg A., Lee E. J., Huang S., Westphal H. Isolated cleft palate in mice with a targeted mutation of the LIM homeobox gene lhx8. Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):15002–15006. doi: 10.1073/pnas.96.26.15002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. van Genderen C., Okamura R. M., Fariñas I., Quo R. G., Parslow T. G., Bruhn L., Grosschedl R. Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev. 1994 Nov 15;8(22):2691–2703. doi: 10.1101/gad.8.22.2691. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES