Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1994 Jun;6(6):893–905. doi: 10.1105/tpc.6.6.893

A calmodulin-sensitive interaction between microtubules and a higher plant homolog of elongation factor-1 alpha.

N A Durso 1, R J Cyr 1
PMCID: PMC160487  PMID: 8061523

Abstract

The microtubules (MTs) of higher plant cells are organized into arrays with essential functions in plant cell growth and differentiation; however, molecular mechanisms underlying the organization and regulation of these arrays remain largely unknown. We have approached this problem using tubulin affinity chromatography to isolate carrot proteins that interact with MTs. From these proteins, a 50-kD polypeptide was selectively purified by exploiting its Ca(2+)-dependent binding to calmodulin (CaM). This polypeptide was identified as a homolog of elongation factor-1 alpha (EF-1 alpha)--a highly conserved and ubiquitous protein translation factor. The carrot EF-1 alpha homolog bundles MTs in vitro, and moreover, this bundling is modulated by the addition of Ca2+ and CaM together (Ca2+/CaM). A direct binding between the EF-1 alpha homolog and MTs was demonstrated, providing novel evidence for such an interaction. Based on these findings, and others discussed herein, we propose that an EF-1 alpha homolog mediates the lateral association of MTs in plant cells by a Ca2+/CaM-sensitive mechanism.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguilar F., Montandon P. E., Stutz E. Two genes encoding the soybean translation elongation factor eEF-1 alpha are transcribed in seedling leaves. Plant Mol Biol. 1991 Sep;17(3):351–360. doi: 10.1007/BF00040630. [DOI] [PubMed] [Google Scholar]
  2. Apuya N. R., Zimmerman J. L. Heat Shock Gene Expression Is Controlled Primarily at the Translational Level in Carrot Cells and Somatic Embryos. Plant Cell. 1992 Jun;4(6):657–665. doi: 10.1105/tpc.4.6.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Axelos M., Bardet C., Liboz T., Le Van Thai A., Curie C., Lescure B. The gene family encoding the Arabidopsis thaliana translation elongation factor EF-1 alpha: molecular cloning, characterization and expression. Mol Gen Genet. 1989 Oct;219(1-2):106–112. doi: 10.1007/BF00261164. [DOI] [PubMed] [Google Scholar]
  4. Bajer A. S., Molè-Bajer J. Reorganization of microtubules in endosperm cells and cell fragments of the higher plant Haemanthus in vivo. J Cell Biol. 1986 Jan;102(1):263–281. doi: 10.1083/jcb.102.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Balaban N., Goldman R. Isolation and characterization of a unique 15 kilodalton trypanosome subpellicular microtubule-associated protein. Cell Motil Cytoskeleton. 1992;21(2):138–146. doi: 10.1002/cm.970210207. [DOI] [PubMed] [Google Scholar]
  6. Brady R. C., Cabral F., Dedman J. R. Identification of a 52-kD calmodulin-binding protein associated with the mitotic spindle apparatus in mammalian cells. J Cell Biol. 1986 Nov;103(5):1855–1861. doi: 10.1083/jcb.103.5.1855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brands J. H., Maassen J. A., van Hemert F. J., Amons R., Möller W. The primary structure of the alpha subunit of human elongation factor 1. Structural aspects of guanine-nucleotide-binding sites. Eur J Biochem. 1986 Feb 17;155(1):167–171. doi: 10.1111/j.1432-1033.1986.tb09472.x. [DOI] [PubMed] [Google Scholar]
  8. Chang-Jie J., Sonobe S. Identification and preliminary characterization of a 65 kDa higher-plant microtubule-associated protein. J Cell Sci. 1993 Aug;105(Pt 4):891–901. doi: 10.1242/jcs.105.4.891. [DOI] [PubMed] [Google Scholar]
  9. Chapin S. J., Bulinski J. C. Microtubule stabilization by assembly-promoting microtubule-associated proteins: a repeat performance. Cell Motil Cytoskeleton. 1992;23(4):236–243. doi: 10.1002/cm.970230403. [DOI] [PubMed] [Google Scholar]
  10. Curie C., Axelos M., Bardet C., Atanassova R., Chaubet N., Lescure B. Modular organization and development activity of an Arabidopsis thaliana EF-1 alpha gene promoter. Mol Gen Genet. 1993 Apr;238(3):428–436. doi: 10.1007/BF00292002. [DOI] [PubMed] [Google Scholar]
  11. Djé M. K., Mazabraud A., Viel A., le Maire M., Denis H., Crawford E., Brown D. D. Three genes under different developmental control encode elongation factor 1-alpha in Xenopus laevis. Nucleic Acids Res. 1990 Jun 25;18(12):3489–3493. doi: 10.1093/nar/18.12.3489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dunn M. A., Morris A., Jack P. L., Hughes M. A. A low-temperature-responsive translation elongation factor 1 alpha from barley (Hordeum vulgare L.). Plant Mol Biol. 1993 Oct;23(1):221–225. doi: 10.1007/BF00021434. [DOI] [PubMed] [Google Scholar]
  13. Ghitescu L., Desjardins M., Bendayan M. Immunocytochemical study of glomerular permeability to anionic, neutral and cationic albumins. Kidney Int. 1992 Jul;42(1):25–32. doi: 10.1038/ki.1992.256. [DOI] [PubMed] [Google Scholar]
  14. Hamel E., Lin C. M. Glutamate-induced polymerization of tubulin: characteristics of the reaction and application to the large-scale purification of tubulin. Arch Biochem Biophys. 1981 Jun;209(1):29–40. doi: 10.1016/0003-9861(81)90253-8. [DOI] [PubMed] [Google Scholar]
  15. Hovemann B., Richter S., Walldorf U., Cziepluch C. Two genes encode related cytoplasmic elongation factors 1 alpha (EF-1 alpha) in Drosophila melanogaster with continuous and stage specific expression. Nucleic Acids Res. 1988 Apr 25;16(8):3175–3194. doi: 10.1093/nar/16.8.3175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hugdahl J. D., Bokros C. L., Hanesworth V. R., Aalund G. R., Morejohn L. C. Unique functional characteristics of the polymerization and MAP binding regulatory domains of plant tubulin. Plant Cell. 1993 Sep;5(9):1063–1080. doi: 10.1105/tpc.5.9.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Knudsen S. M., Frydenberg J., Clark B. F., Leffers H. Tissue-dependent variation in the expression of elongation factor-1 alpha isoforms: isolation and characterisation of a cDNA encoding a novel variant of human elongation-factor 1 alpha. Eur J Biochem. 1993 Aug 1;215(3):549–554. doi: 10.1111/j.1432-1033.1993.tb18064.x. [DOI] [PubMed] [Google Scholar]
  18. Kuriyama R., Savereide P., Lefebvre P., Dasgupta S. The predicted amino acid sequence of a centrosphere protein in dividing sea urchin eggs is similar to elongation factor (EF-1 alpha). J Cell Sci. 1990 Feb;95(Pt 2):231–236. doi: 10.1242/jcs.95.2.231. [DOI] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Lambert A. M. Microtubule-organizing centers in higher plants. Curr Opin Cell Biol. 1993 Feb;5(1):116–122. doi: 10.1016/s0955-0674(05)80016-x. [DOI] [PubMed] [Google Scholar]
  21. Lane L. C. A simple method for stabilizing protein-sulfhydryl groups during SDS-gel electrophoresis. Anal Biochem. 1978 Jun 1;86(2):655–664. doi: 10.1016/0003-2697(78)90792-3. [DOI] [PubMed] [Google Scholar]
  22. Lee G. Non-motor microtubule-associated proteins. Curr Opin Cell Biol. 1993 Feb;5(1):88–94. doi: 10.1016/s0955-0674(05)80013-4. [DOI] [PubMed] [Google Scholar]
  23. Linz J. E., Lira L. M., Sypherd P. S. The primary structure and the functional domains of an elongation factor-1 alpha from Mucor racemosus. J Biol Chem. 1986 Nov 15;261(32):15022–15029. [PubMed] [Google Scholar]
  24. Ludueña R. F. Are tubulin isotypes functionally significant. Mol Biol Cell. 1993 May;4(5):445–457. doi: 10.1091/mbc.4.5.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Marchesi V. T., Ngo N. In vitro assembly of multiprotein complexes containing alpha, beta, and gamma tubulin, heat shock protein HSP70, and elongation factor 1 alpha. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):3028–3032. doi: 10.1073/pnas.90.7.3028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Marty I., Brugidou C., Chartier Y., Meyer Y. Growth-related gene expression in Nicotiana tabacum mesophyll protoplasts. Plant J. 1993 Aug;4(2):265–278. doi: 10.1046/j.1365-313x.1993.04020265.x. [DOI] [PubMed] [Google Scholar]
  27. Merrick W. C. Assays for eukaryotic protein synthesis. Methods Enzymol. 1979;60:108–123. doi: 10.1016/s0076-6879(79)60011-3. [DOI] [PubMed] [Google Scholar]
  28. Merrick W. C., Dever T. E., Kinzy T. G., Conroy S. C., Cavallius J., Owens C. L. Characterization of protein synthesis factors from rabbit reticulocytes. Biochim Biophys Acta. 1990 Aug 27;1050(1-3):235–240. doi: 10.1016/0167-4781(90)90173-y. [DOI] [PubMed] [Google Scholar]
  29. Metz A. M., Timmer R. T., Allen M. L., Browning K. S. Sequence of a cDNA encoding the alpha-subunit of wheat translation elongation factor 1. Gene. 1992 Oct 21;120(2):315–316. doi: 10.1016/0378-1119(92)90113-4. [DOI] [PubMed] [Google Scholar]
  30. Michalik L., Vanier M. T., Launay J. F. Characterization of a 67 kDa microtubule-binding protein in the pancreas from different species. Biochim Biophys Acta. 1992 Jun 12;1116(3):269–273. doi: 10.1016/0304-4165(92)90039-w. [DOI] [PubMed] [Google Scholar]
  31. Michalik L., Vanier M. T., Launay J. F. Microtubule affinity chromatography: a new technique for isolating microtubule-binding proteins from rat pancreas. Cell Mol Biol. 1991;37(8):805–811. [PubMed] [Google Scholar]
  32. Montandon P. E., Stutz E. Structure and expression of the Euglena gracilis nuclear gene coding for the translation elongation factor EF-1 alpha. Nucleic Acids Res. 1990 Jan 11;18(1):75–82. doi: 10.1093/nar/18.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Oh S. H., Steiner H. Y., Dougall D. K., Roberts D. M. Modulation of calmodulin levels, calmodulin methylation, and calmodulin binding proteins during carrot cell growth and embryogenesis. Arch Biochem Biophys. 1992 Aug 15;297(1):28–34. doi: 10.1016/0003-9861(92)90636-b. [DOI] [PubMed] [Google Scholar]
  34. Ohta K., Toriyama M., Miyazaki M., Murofushi H., Hosoda S., Endo S., Sakai H. The mitotic apparatus-associated 51-kDa protein from sea urchin eggs is a GTP-binding protein and is immunologically related to yeast polypeptide elongation factor 1 alpha. J Biol Chem. 1990 Feb 25;265(6):3240–3247. [PubMed] [Google Scholar]
  35. Palevitz B. A. Morphological Plasticity of the Mitotic Apparatus in Plants and Its Developmental Consequences. Plant Cell. 1993 Sep;5(9):1001–1009. doi: 10.1105/tpc.5.9.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pokalsky A. R., Hiatt W. R., Ridge N., Rasmussen R., Houck C. M., Shewmaker C. K. Structure and expression of elongation factor 1 alpha in tomato. Nucleic Acids Res. 1989 Jun 26;17(12):4661–4673. doi: 10.1093/nar/17.12.4661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Riederer B. M., Goodman S. R. Association of brain spectrin isoforms with microtubules. FEBS Lett. 1990 Dec 17;277(1-2):49–52. doi: 10.1016/0014-5793(90)80807-u. [DOI] [PubMed] [Google Scholar]
  38. Riis B., Rattan S. I., Clark B. F., Merrick W. C. Eukaryotic protein elongation factors. Trends Biochem Sci. 1990 Nov;15(11):420–424. doi: 10.1016/0968-0004(90)90279-k. [DOI] [PubMed] [Google Scholar]
  39. Skoufias D. A., Scholey J. M. Cytoplasmic microtubule-based motor proteins. Curr Opin Cell Biol. 1993 Feb;5(1):95–104. doi: 10.1016/s0955-0674(05)80014-6. [DOI] [PubMed] [Google Scholar]
  40. Toriyama M., Ohta K., Endo S., Sakai H. 51-kd protein, a component of microtubule-organizing granules in the mitotic apparatus involved in aster formation in vitro. Cell Motil Cytoskeleton. 1988;9(2):117–128. doi: 10.1002/cm.970090204. [DOI] [PubMed] [Google Scholar]
  41. Ursin V. M., Irvine J. M., Hiatt W. R., Shewmaker C. K. Developmental analysis of elongation factor-1 alpha expression in transgenic tobacco. Plant Cell. 1991 Jun;3(6):583–591. doi: 10.1105/tpc.3.6.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Vale R. D. Microtubule motors: many new models off the assembly line. Trends Biochem Sci. 1992 Aug;17(8):300–304. doi: 10.1016/0968-0004(92)90440-k. [DOI] [PubMed] [Google Scholar]
  43. Vantard M., Lambert A. M., De Mey J., Picquot P., Van Eldik L. J. Characterization and immunocytochemical distribution of calmodulin in higher plant endosperm cells: localization in the mitotic apparatus. J Cell Biol. 1985 Aug;101(2):488–499. doi: 10.1083/jcb.101.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Vantard M., Schellenbaum P., Peter C., Lambert A. M. Higher plant microtubule-associated proteins: in vitro functional assays. Biochimie. 1993;75(8):725–730. doi: 10.1016/0300-9084(93)90103-y. [DOI] [PubMed] [Google Scholar]
  45. Vera J. C., Rivas C. I., Maccioni R. B. Heat-stable microtubule protein MAP-1 binds to microtubules and induces microtubule assembly. FEBS Lett. 1988 May 9;232(1):159–162. doi: 10.1016/0014-5793(88)80408-3. [DOI] [PubMed] [Google Scholar]
  46. Viel A., le Maire M., Philippe H., Morales J., Mazabraud A., Denis H. Structural and functional properties of thesaurin a (42Sp50), the major protein of the 42 S particles present in Xenopus laevis previtellogenic oocytes. J Biol Chem. 1991 Jun 5;266(16):10392–10399. [PubMed] [Google Scholar]
  47. Weingarten M. D., Lockwood A. H., Hwo S. Y., Kirschner M. W. A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A. 1975 May;72(5):1858–1862. doi: 10.1073/pnas.72.5.1858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Yang F., Demma M., Warren V., Dharmawardhane S., Condeelis J. Identification of an actin-binding protein from Dictyostelium as elongation factor 1a. Nature. 1990 Oct 4;347(6292):494–496. doi: 10.1038/347494a0. [DOI] [PubMed] [Google Scholar]
  49. Yang W., Burkhart W., Cavallius J., Merrick W. C., Boss W. F. Purification and characterization of a phosphatidylinositol 4-kinase activator in carrot cells. J Biol Chem. 1993 Jan 5;268(1):392–398. [PubMed] [Google Scholar]
  50. Zhang D., Wadsworth P., Hepler P. K. Microtubule dynamics in living dividing plant cells: confocal imaging of microinjected fluorescent brain tubulin. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8820–8824. doi: 10.1073/pnas.87.22.8820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Zhu J. K., Damsz B., Kononowicz A. K., Bressan R. A., Hasegawa P. M. A higher plant extracellular vitronectin-like adhesion protein is related to the translational elongation factor-1 alpha. Plant Cell. 1994 Mar;6(3):393–404. doi: 10.1105/tpc.6.3.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Zimmerman J. L. Somatic Embryogenesis: A Model for Early Development in Higher Plants. Plant Cell. 1993 Oct;5(10):1411–1423. doi: 10.1105/tpc.5.10.1411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. van Hemert F. J., Amons R., Pluijms W. J., van Ormondt H., Möller W. The primary structure of elongation factor EF-1 alpha from the brine shrimp Artemia. EMBO J. 1984 May;3(5):1109–1113. doi: 10.1002/j.1460-2075.1984.tb01937.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES