Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1994 Aug;6(8):1099–1106. doi: 10.1105/tpc.6.8.1099

Isolated Plant Nuclei Nucleate Microtubule Assembly: The Nuclear Surface in Higher Plants Has Centrosome-like Activity.

V Stoppin 1, M Vantard 1, A C Schmit 1, A M Lambert 1
PMCID: PMC160504  PMID: 12244268

Abstract

In most eukaryotic cells, microtubules (MTs) are assembled at identified nucleating sites, such as centrosomes or spindle pole bodies. Higher plant cells do not possess such centrosome-like structures. Thus, the fundamental issues of where and how the intracellular plant MTs are nucleated remain highly debatable. A large body of evidence indicates that plant MTs emerge from the nuclear periphery. In this study, we developed an in vitro assay in which isolated maize nuclei nucleate MT assembly at a tubulin concentration (14 [mu]M of neurotubulin) that is not efficient for spontaneous MT assembly. No MT-stabilizing agents, such as taxol or dimethyl sulfoxide, were used. Our model provides evidence that the nuclear surface functions as a MT-nucleating site in higher plant cells. A monoclonal antibody raised against a pericentriolar antigen immunostained the surface of isolated nuclei, and a 100-kD polypeptide in 4 M urea-treated nuclear extracts was detected.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bornens M., Paintrand M., Berges J., Marty M. C., Karsenti E. Structural and chemical characterization of isolated centrosomes. Cell Motil Cytoskeleton. 1987;8(3):238–249. doi: 10.1002/cm.970080305. [DOI] [PubMed] [Google Scholar]
  2. Chevrier V., Komesli S., Schmit A. C., Vantard M., Lambert A. M., Job D. A monoclonal antibody, raised against mammalian centrosomes and screened by recognition of plant microtubule organizing centers, identifies a pericentriolar component in different cell types. J Cell Sci. 1992 Apr;101(Pt 4):823–835. doi: 10.1242/jcs.101.4.823. [DOI] [PubMed] [Google Scholar]
  3. Clayton L., Black C. M., Lloyd C. W. Microtubule nucleating sites in higher plant cells identified by an auto-antibody against pericentriolar material. J Cell Biol. 1985 Jul;101(1):319–324. doi: 10.1083/jcb.101.1.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Colasanti J., Cho S. O., Wick S., Sundaresan V. Localization of the Functional p34cdc2 Homolog of Maize in Root Tip and Stomatal Complex Cells: Association with Predicted Division Sites. Plant Cell. 1993 Sep;5(9):1101–1111. doi: 10.1105/tpc.5.9.1101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. De Brabander M., Geuens G., Nuydens R., Willebrords R., De Mey J. Taxol induces the assembly of free microtubules in living cells and blocks the organizing capacity of the centrosomes and kinetochores. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5608–5612. doi: 10.1073/pnas.78.9.5608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Joshi H. C., Baas P. W. A new perspective on microtubules and axon growth. J Cell Biol. 1993 Jun;121(6):1191–1196. doi: 10.1083/jcb.121.6.1191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Karsenti E. Microtubule dynamics: severing microtubules in mitosis. Curr Biol. 1993 Apr 1;3(4):208–210. doi: 10.1016/0960-9822(93)90334-k. [DOI] [PubMed] [Google Scholar]
  8. Klotz C., Dabauvalle M. C., Paintrand M., Weber T., Bornens M., Karsenti E. Parthenogenesis in Xenopus eggs requires centrosomal integrity. J Cell Biol. 1990 Feb;110(2):405–415. doi: 10.1083/jcb.110.2.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lambert A. M. Microtubule-organizing centers in higher plants. Curr Opin Cell Biol. 1993 Feb;5(1):116–122. doi: 10.1016/s0955-0674(05)80016-x. [DOI] [PubMed] [Google Scholar]
  10. Liu B., Joshi H. C., Wilson T. J., Silflow C. D., Palevitz B. A., Snustad D. P. gamma-Tubulin in Arabidopsis: gene sequence, immunoblot, and immunofluorescence studies. Plant Cell. 1994 Feb;6(2):303–314. doi: 10.1105/tpc.6.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Liu B., Marc J., Joshi H. C., Palevitz B. A. A gamma-tubulin-related protein associated with the microtubule arrays of higher plants in a cell cycle-dependent manner. J Cell Sci. 1993 Apr;104(Pt 4):1217–1228. doi: 10.1242/jcs.104.4.1217. [DOI] [PubMed] [Google Scholar]
  12. Mazia D. The chromosome cycle and the centrosome cycle in the mitotic cycle. Int Rev Cytol. 1987;100:49–92. doi: 10.1016/s0074-7696(08)61698-8. [DOI] [PubMed] [Google Scholar]
  13. Mitchison T., Kirschner M. Microtubule assembly nucleated by isolated centrosomes. Nature. 1984 Nov 15;312(5991):232–237. doi: 10.1038/312232a0. [DOI] [PubMed] [Google Scholar]
  14. Ohta K., Shiina N., Okumura E., Hisanaga S., Kishimoto T., Endo S., Gotoh Y., Nishida E., Sakai H. Microtubule nucleating activity of centrosomes in cell-free extracts from Xenopus eggs: involvement of phosphorylation and accumulation of pericentriolar material. J Cell Sci. 1993 Jan;104(Pt 1):125–137. doi: 10.1242/jcs.104.1.125. [DOI] [PubMed] [Google Scholar]
  15. Schatten H., Schatten G., Mazia D., Balczon R., Simerly C. Behavior of centrosomes during fertilization and cell division in mouse oocytes and in sea urchin eggs. Proc Natl Acad Sci U S A. 1986 Jan;83(1):105–109. doi: 10.1073/pnas.83.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sellitto C., Kimble M., Kuriyama R. Heterogeneity of microtubule organizing center components as revealed by monoclonal antibodies to mammalian centrosomes and to nucleus-associated bodies from dictyostelium. Cell Motil Cytoskeleton. 1992;22(1):7–24. doi: 10.1002/cm.970220103. [DOI] [PubMed] [Google Scholar]
  17. Shelanski M. L., Gaskin F., Cantor C. R. Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci U S A. 1973 Mar;70(3):765–768. doi: 10.1073/pnas.70.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Staiger C. J., Lloyd C. W. The plant cytoskeleton. Curr Opin Cell Biol. 1991 Feb;3(1):33–42. doi: 10.1016/0955-0674(91)90163-s. [DOI] [PubMed] [Google Scholar]
  19. Vantard M., Levilliers N., Hill A. M., Adoutte A., Lambert A. M. Incorporation of Paramecium axonemal tubulin into higher plant cells reveals functional sites of microtubule assembly. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8825–8829. doi: 10.1073/pnas.87.22.8825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Verde F., Berrez J. M., Antony C., Karsenti E. Taxol-induced microtubule asters in mitotic extracts of Xenopus eggs: requirement for phosphorylated factors and cytoplasmic dynein. J Cell Biol. 1991 Mar;112(6):1177–1187. doi: 10.1083/jcb.112.6.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Weingarten M. D., Lockwood A. H., Hwo S. Y., Kirschner M. W. A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A. 1975 May;72(5):1858–1862. doi: 10.1073/pnas.72.5.1858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Willmitzer L., Wagner K. G. The isolation of nuclei from tissue-cultured plant cells. Exp Cell Res. 1981 Sep;135(1):69–77. doi: 10.1016/0014-4827(81)90300-1. [DOI] [PubMed] [Google Scholar]
  23. Zhang D., Wadsworth P., Hepler P. K. Microtubule dynamics in living dividing plant cells: confocal imaging of microinjected fluorescent brain tubulin. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8820–8824. doi: 10.1073/pnas.87.22.8820. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES