Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1995 Apr;7(4):473–485. doi: 10.1105/tpc.7.4.473

Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli.

E Liscum 1, W R Briggs 1
PMCID: PMC160797  PMID: 7773019

Abstract

The phototropic response is an important component of seedling establishment in higher plants because it orients the young seedlings for maximal photosynthetic light capture. Despite their obvious importance, little is known about the mechanisms underlying the perception and transduction of the light signals that induce phototropic curvatures. Here, we report the isolation of eight mutants of Arabidopsis that lack or have severely impaired phototropic responses. These nph (for nonphototropic hypocotyl) mutants comprise four genetic loci: nph1, nph2, nph3, and nph4. Physiological and biochemical characterization of the nph1 allele series indicated that the NPH1 locus may encode the apoprotein for a dual-chromophoric or multichromophoric holoprotein photoreceptor capable of absorbing UV-A, blue, and green light and that this photoreceptor regulates all the phototropic responses of Arabidopsis. It appears that the NPH1 protein is most likely a 120-kD plasma membrane-associated phosphoprotein because all of the nph1 mutations negatively affected the abundance of this protein. In addition, the putative NPH1 photoreceptor protein is genetically and biochemically distinct from the HY4 protein, which most likely acts as a photoreceptor for blue light-mediated hypocotyl growth inhibition. Furthermore, the NPH1 and HY4 proteins are not functionally redundant because mutations in either gene alone affect only one physiological response but not the other, thus providing strong support for the hypothesis that more than one blue light photoreceptor is required for the normal growth and development of a seedling.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad M., Cashmore A. R. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature. 1993 Nov 11;366(6451):162–166. doi: 10.1038/366162a0. [DOI] [PubMed] [Google Scholar]
  2. Deng X. W. Fresh view of light signal transduction in plants. Cell. 1994 Feb 11;76(3):423–426. doi: 10.1016/0092-8674(94)90107-4. [DOI] [PubMed] [Google Scholar]
  3. Eker A. P., Hessels J. K., Dekker R. H. Photoreactivating enzyme from Streptomyces griseus--VI. Action spectrum and kinetics of photoreactivation. Photochem Photobiol. 1986 Aug;44(2):197–205. doi: 10.1111/j.1751-1097.1986.tb03586.x. [DOI] [PubMed] [Google Scholar]
  4. Everett M., Thimann K. V. Second positive phototropism in the Avena coleoptile. Plant Physiol. 1968 Nov;43(11):1786–1792. doi: 10.1104/pp.43.11.1786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Greene B. A., Allred D. R., Morishige D. T., Staehelin L. A. Hierarchical Response of Light Harvesting Chlorophyll-Proteins in a Light-Sensitive Chlorophyll b-Deficient Mutant of Maize. Plant Physiol. 1988 Jun;87(2):357–364. doi: 10.1104/pp.87.2.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Iwatsuki N., Joe C. O., Werbin H. Evidence that deoxyribonucleic acid photolyase from baker's yeast is a flavoprotein. Biochemistry. 1980 Mar 18;19(6):1172–1176. doi: 10.1021/bi00547a021. [DOI] [PubMed] [Google Scholar]
  7. Janoudi A-K, Konjevic R., Apel P., Poff K. L. Time threshold for second positive phototropism is decreased by a preirradiation with red light. Plant Physiol. 1992 Aug;99(4):1422–1425. doi: 10.1104/pp.99.4.1422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Janoudi A-K, Poff K. L. Characterization of adaptation in phototropism of Arabidopsis thaliana. Plant Physiol. 1991;95:517–521. doi: 10.1104/pp.95.2.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Janoudi A. K., Poff K. L. Desensitization and recovery of phototropic responsiveness in Arabidopsis thaliana. Plant Physiol. 1993;101:1175–1180. doi: 10.1104/pp.101.4.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Janoudi A., Poff K. L. A common fluence threshold for first positive and second positive phototropism in Arabidopsis thaliana. Plant Physiol. 1990;94:1605–1608. doi: 10.1104/pp.94.4.1605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jorns M. S., Wang B. Y., Jordan S. P., Chanderkar L. P. Chromophore function and interaction in Escherichia coli DNA photolyase: reconstitution of the apoenzyme with pterin and/or flavin derivatives. Biochemistry. 1990 Jan 16;29(2):552–561. doi: 10.1021/bi00454a032. [DOI] [PubMed] [Google Scholar]
  12. Khurana J. P., Poff K. L. Mutants of Arabidopsis thaliana with altered phototropism. Planta. 1989;178:400–406. [PubMed] [Google Scholar]
  13. Khurana J. P., Ren Z., Steinitz B., Parks B., Best T. R., Poff K. L. Mutants of Arabidopsis thaliana with decreased amplitude in their phototropic response. Plant Physiol. 1989;91:685–689. doi: 10.1104/pp.91.2.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Konjevic R., Khurana J. P., Poff K. L. Analysis of multiple photoreceptor pigments for phototropism in a mutant of Arabidopsis thaliana. Photochem Photobiol. 1992 May;55(5):789–792. [PubMed] [Google Scholar]
  15. Konjević R., Steinitz B., Poff K. L. Dependence of the phototropic response of Arabidopsis thaliana on fluence rate and wavelength. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9876–9880. doi: 10.1073/pnas.86.24.9876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Koornneef M., Dellaert L. W., van der Veen J. H. EMS- and radiation-induced mutation frequencies at individual loci in Arabidopsis thaliana (L.) Heynh. Mutat Res. 1982 Mar;93(1):109–123. doi: 10.1016/0027-5107(82)90129-4. [DOI] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Liscum E., Young J. C., Poff K. L., Hangarter R. P. Genetic separation of phototropism and blue light inhibition of stem elongation. Plant Physiol. 1992 Sep;100(1):267–271. doi: 10.1104/pp.100.1.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nagao M., Tanaka K. FAD-dependent regulation of transcription, translation, post-translational processing, and post-processing stability of various mitochondrial acyl-CoA dehydrogenases and of electron transfer flavoprotein and the site of holoenzyme formation. J Biol Chem. 1992 Sep 5;267(25):17925–17932. [PubMed] [Google Scholar]
  20. Parker K., Baskin T. I., Briggs W. R. Evidence for a phytochrome-mediated phototropism in etiolated pea seedlings. Plant Physiol. 1989 Feb;89(2):493–497. doi: 10.1104/pp.89.2.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Reymond P., Short T. W., Briggs W. R., Poff K. L. Light-induced phosphorylation of a membrane protein plays an early role in signal transduction for phototropism in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1992 May;89(10):4718–4721. doi: 10.1073/pnas.89.10.4718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sancar A. Structure and function of DNA photolyase. Biochemistry. 1994 Jan 11;33(1):2–9. doi: 10.1021/bi00167a001. [DOI] [PubMed] [Google Scholar]
  23. Short T. W., Briggs W. R. Characterization of a Rapid, Blue Light-Mediated Change in Detectable Phosphorylation of a Plasma Membrane Protein from Etiolated Pea (Pisum sativum L.) Seedlings. Plant Physiol. 1990 Jan;92(1):179–185. doi: 10.1104/pp.92.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Short T. W., Reymond P., Briggs W. R. A Pea Plasma Membrane Protein Exhibiting Blue Light-Induced Phosphorylation Retains Photosensitivity following Triton Solubilization. Plant Physiol. 1993 Feb;101(2):647–655. doi: 10.1104/pp.101.2.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Shropshire W., Withrow R. B. Action Spectrum of Phototropic Tip-Curvature of Avena. Plant Physiol. 1958 Sep;33(5):360–365. doi: 10.1104/pp.33.5.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Steinitz B., Ren Z., Poff K. L. Blue and Green Light-Induced Phototropism in Arabidopsis thaliana and Lactuca sativa L. Seedlings. Plant Physiol. 1985 Jan;77(1):248–251. doi: 10.1104/pp.77.1.248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zimmerman B. K., Briggs W. R. Phototropic Dosage-Response Curves for Oat Coleoptiles. Plant Physiol. 1963 May;38(3):248–253. doi: 10.1104/pp.38.3.248. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES