Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1995 Jul;7(7):845–857. doi: 10.1105/tpc.7.7.845

Regulation of Protein Degradation.

J Callis 1
PMCID: PMC160875  PMID: 12242390

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arrigo A. P., Simon M., Darlix J. L., Spahr P. F. A 20S particle ubiquitous from yeast to human. J Mol Evol. 1987;25(2):141–150. doi: 10.1007/BF02101756. [DOI] [PubMed] [Google Scholar]
  2. Bartling D., Rehling P., Weiler E. W. Functional expression and molecular characterization of AtUBC2-1, a novel ubiquitin-conjugating enzyme (E2) from Arabidopsis thaliana. Plant Mol Biol. 1993 Oct;23(2):387–396. doi: 10.1007/BF00029013. [DOI] [PubMed] [Google Scholar]
  3. Belozersky M. A., Dunaevsky Y. E., Voskoboynikova N. E. Isolation and properties of a metalloproteinase from buckwheat (Fagopyrum esculentum) seeds. Biochem J. 1990 Dec 15;272(3):677–682. doi: 10.1042/bj2720677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boller T., Kende H. Hydrolytic enzymes in the central vacuole of plant cells. Plant Physiol. 1979 Jun;63(6):1123–1132. doi: 10.1104/pp.63.6.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cervantes E., Rodríguez A., Nicolás G. Ethylene regulates the expression of a cysteine proteinase gene during germination of chickpea (Cicer arietinum L.). Plant Mol Biol. 1994 May;25(2):207–215. doi: 10.1007/BF00023238. [DOI] [PubMed] [Google Scholar]
  6. Chen P., Johnson P., Sommer T., Jentsch S., Hochstrasser M. Multiple ubiquitin-conjugating enzymes participate in the in vivo degradation of the yeast MAT alpha 2 repressor. Cell. 1993 Jul 30;74(2):357–369. doi: 10.1016/0092-8674(93)90426-q. [DOI] [PubMed] [Google Scholar]
  7. Christensen A. H., Sharrock R. A., Quail P. H. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol. 1992 Feb;18(4):675–689. doi: 10.1007/BF00020010. [DOI] [PubMed] [Google Scholar]
  8. Ciechanover A., Schwartz A. L. The ubiquitin-mediated proteolytic pathway: mechanisms of recognition of the proteolytic substrate and involvement in the degradation of native cellular proteins. FASEB J. 1994 Feb;8(2):182–191. doi: 10.1096/fasebj.8.2.8119489. [DOI] [PubMed] [Google Scholar]
  9. Crawford N. M. Nitrate: nutrient and signal for plant growth. Plant Cell. 1995 Jul;7(7):859–868. doi: 10.1105/tpc.7.7.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DeMartino G. N., Slaughter C. A. Regulatory proteins of the proteasome. Enzyme Protein. 1993;47(4-6):314–324. doi: 10.1159/000468689. [DOI] [PubMed] [Google Scholar]
  11. Driscoll J. The role of the proteasome in cellular protein degradation. Histol Histopathol. 1994 Jan;9(1):197–202. [PubMed] [Google Scholar]
  12. Egner R., Thumm M., Straub M., Simeon A., Schüller H. J., Wolf D. H. Tracing intracellular proteolytic pathways. Proteolysis of fatty acid synthase and other cytoplasmic proteins in the yeast Saccharomyces cerevisiae. J Biol Chem. 1993 Dec 25;268(36):27269–27276. [PubMed] [Google Scholar]
  13. Fujinami K., Tanahashi N., Tanaka K., Ichihara A., Cejka Z., Baumeister W., Miyawaki M., Sato T., Nakagawa H. Purification and characterization of the 26 S proteasome from spinach leaves. J Biol Chem. 1994 Oct 14;269(41):25905–25910. [PubMed] [Google Scholar]
  14. Ganoth D., Leshinsky E., Eytan E., Hershko A. A multicomponent system that degrades proteins conjugated to ubiquitin. Resolution of factors and evidence for ATP-dependent complex formation. J Biol Chem. 1988 Sep 5;263(25):12412–12419. [PubMed] [Google Scholar]
  15. Garbarino J. E., Rockhold D. R., Belknap W. R. Expression of stress-responsive ubiquitin genes in potato tubers. Plant Mol Biol. 1992 Oct;20(2):235–244. doi: 10.1007/BF00014491. [DOI] [PubMed] [Google Scholar]
  16. Genschik P., Parmentier Y., Durr A., Marbach J., Criqui M. C., Jamet E., Fleck J. Ubiquitin genes are differentially regulated in protoplast-derived cultures of Nicotiana sylvestris and in response to various stresses. Plant Mol Biol. 1992 Dec;20(5):897–910. doi: 10.1007/BF00027161. [DOI] [PubMed] [Google Scholar]
  17. Girod P. A., Carpenter T. B., van Nocker S., Sullivan M. L., Vierstra R. D. Homologs of the essential ubiquitin conjugating enzymes UBC1, 4, and 5 in yeast are encoded by a multigene family in Arabidopsis thaliana. Plant J. 1993 Apr;3(4):545–552. doi: 10.1046/j.1365-313x.1993.03040545.x. [DOI] [PubMed] [Google Scholar]
  18. Glotzer M., Murray A. W., Kirschner M. W. Cyclin is degraded by the ubiquitin pathway. Nature. 1991 Jan 10;349(6305):132–138. doi: 10.1038/349132a0. [DOI] [PubMed] [Google Scholar]
  19. Goebl M. G., Goetsch L., Byers B. The Ubc3 (Cdc34) ubiquitin-conjugating enzyme is ubiquitinated and phosphorylated in vivo. Mol Cell Biol. 1994 May;14(5):3022–3029. doi: 10.1128/mcb.14.5.3022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Goldberg A. L., Rock K. L. Proteolysis, proteasomes and antigen presentation. Nature. 1992 Jun 4;357(6377):375–379. doi: 10.1038/357375a0. [DOI] [PubMed] [Google Scholar]
  21. Goodfellow V. J., Solomonson L. P., Oaks A. Characterization of a maize root proteinase. Plant Physiol. 1993 Feb;101(2):415–419. doi: 10.1104/pp.101.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gordon C., McGurk G., Dillon P., Rosen C., Hastie N. D. Defective mitosis due to a mutation in the gene for a fission yeast 26S protease subunit. Nature. 1993 Nov 25;366(6453):355–357. doi: 10.1038/366355a0. [DOI] [PubMed] [Google Scholar]
  23. Guerrero F. D., Jones J. T., Mullet J. E. Turgor-responsive gene transcription and RNA levels increase rapidly when pea shoots are wilted. Sequence and expression of three inducible genes. Plant Mol Biol. 1990 Jul;15(1):11–26. doi: 10.1007/BF00017720. [DOI] [PubMed] [Google Scholar]
  24. Hammerton R. W., Ho T. H. Hormonal regulation of the development of protease and carboxypeptidase activities in barley aleurone layers. Plant Physiol. 1986 Mar;80(3):692–697. doi: 10.1104/pp.80.3.692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Heinemeyer W., Tröndle N., Albrecht G., Wolf D. H. PRE5 and PRE6, the last missing genes encoding 20S proteasome subunits from yeast? Indication for a set of 14 different subunits in the eukaryotic proteasome core. Biochemistry. 1994 Oct 11;33(40):12229–12237. doi: 10.1021/bi00206a028. [DOI] [PubMed] [Google Scholar]
  26. Hensel L. L., Grbić V., Baumgarten D. A., Bleecker A. B. Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in arabidopsis. Plant Cell. 1993 May;5(5):553–564. doi: 10.1105/tpc.5.5.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hershko A., Ganoth D., Sudakin V., Dahan A., Cohen L. H., Luca F. C., Ruderman J. V., Eytan E. Components of a system that ligates cyclin to ubiquitin and their regulation by the protein kinase cdc2. J Biol Chem. 1994 Feb 18;269(7):4940–4946. [PubMed] [Google Scholar]
  28. Hilt W., Heinemeyer W., Wolf D. H. Studies on the yeast proteasome uncover its basic structural features and multiple in vivo functions. Enzyme Protein. 1993;47(4-6):189–201. doi: 10.1159/000468678. [DOI] [PubMed] [Google Scholar]
  29. Hochstrasser M., Varshavsky A. In vivo degradation of a transcriptional regulator: the yeast alpha 2 repressor. Cell. 1990 May 18;61(4):697–708. doi: 10.1016/0092-8674(90)90481-s. [DOI] [PubMed] [Google Scholar]
  30. Holloway S. L., Glotzer M., King R. W., Murray A. W. Anaphase is initiated by proteolysis rather than by the inactivation of maturation-promoting factor. Cell. 1993 Jul 2;73(7):1393–1402. doi: 10.1016/0092-8674(93)90364-v. [DOI] [PubMed] [Google Scholar]
  31. Jabben M., Shanklin J., Vierstra R. D. Red light-induced accumulation of ubiquitin-phytochrome conjugates in both monocots and dicots. Plant Physiol. 1989 Jun;90(2):380–384. doi: 10.1104/pp.90.2.380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Kaiser W. M., Huber S. C. Posttranslational Regulation of Nitrate Reductase in Higher Plants. Plant Physiol. 1994 Nov;106(3):817–821. doi: 10.1104/pp.106.3.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kim W. T., Yang S. F. Turnover of 1-aminocyclopropane-1-carboxylic Acid synthase protein in wounded tomato fruit tissue. Plant Physiol. 1992 Nov;100(3):1126–1131. doi: 10.1104/pp.100.3.1126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ko K., Doung C., Ko Z. W. Nucleotide sequence of a Brassica napus Clp homolog. Plant Physiol. 1994 Mar;104(3):1087–1089. doi: 10.1104/pp.104.3.1087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Koehler S. M., Ho T. H. A major gibberellic Acid-induced barley aleurone cysteine proteinase which digests hordein : purification and characterization. Plant Physiol. 1990 Sep;94(1):251–258. doi: 10.1104/pp.94.1.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Koehler S. M., Ho T. H. Hormonal regulation, processing, and secretion of cysteine proteinases in barley aleurone layers. Plant Cell. 1990 Aug;2(8):769–783. doi: 10.1105/tpc.2.8.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Koehler S., Ho T. H. Purification and characterization of gibberellic Acid-induced cysteine endoproteases in barley aleurone layers. Plant Physiol. 1988 May;87(1):95–103. doi: 10.1104/pp.87.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Koizumi M., Yamaguchi-Shinozaki K., Tsuji H., Shinozaki K. Structure and expression of two genes that encode distinct drought-inducible cysteine proteinases in Arabidopsis thaliana. Gene. 1993 Jul 30;129(2):175–182. doi: 10.1016/0378-1119(93)90266-6. [DOI] [PubMed] [Google Scholar]
  39. Li X. Z., Oaks A. Induction and Turnover of Nitrate Reductase in Zea mays (Influence of Light). Plant Physiol. 1994 Nov;106(3):1145–1149. doi: 10.1104/pp.106.3.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Li X. Z., Oaks A. Induction and Turnover of Nitrate Reductase in Zea mays (Influence of NO3-). Plant Physiol. 1993 Aug;102(4):1251–1257. doi: 10.1104/pp.102.4.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Linthorst H. J., van der Does C., Brederode F. T., Bol J. F. Circadian expression and induction by wounding of tobacco genes for cysteine proteinase. Plant Mol Biol. 1993 Feb;21(4):685–694. doi: 10.1007/BF00014551. [DOI] [PubMed] [Google Scholar]
  42. Löwe J., Stock D., Jap B., Zwickl P., Baumeister W., Huber R. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science. 1995 Apr 28;268(5210):533–539. doi: 10.1126/science.7725097. [DOI] [PubMed] [Google Scholar]
  43. Mackintosh C., Douglas P., Lillo C. Identification of a Protein That Inhibits the Phosphorylated Form of Nitrate Reductase from Spinach (Spinacia oleracea) Leaves. Plant Physiol. 1995 Feb;107(2):451–457. doi: 10.1104/pp.107.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Merchant S., Bogorad L. Rapid degradation of apoplastocyanin in Cu(II)-deficient cells of Chlamydomonas reinhardtii. J Biol Chem. 1986 Dec 5;261(34):15850–15853. [PubMed] [Google Scholar]
  45. Orlowski M., Cardozo C., Michaud C. Evidence for the presence of five distinct proteolytic components in the pituitary multicatalytic proteinase complex. Properties of two components cleaving bonds on the carboxyl side of branched chain and small neutral amino acids. Biochemistry. 1993 Feb 16;32(6):1563–1572. doi: 10.1021/bi00057a022. [DOI] [PubMed] [Google Scholar]
  46. Orlowski M. The multicatalytic proteinase complex, a major extralysosomal proteolytic system. Biochemistry. 1990 Nov 13;29(45):10289–10297. doi: 10.1021/bi00497a001. [DOI] [PubMed] [Google Scholar]
  47. Ozaki M., Fujinami K., Tanaka K., Amemiya Y., Sato T., Ogura N., Nakagawa H. Purification and initial characterization of the proteasome from the higher plant Spinacia oleracea. J Biol Chem. 1992 Oct 25;267(30):21678–21684. [PubMed] [Google Scholar]
  48. Papastoitsis G., Wilson K. A. Initiation of the degradation of the soybean kunitz and bowman-birk trypsin inhibitors by a cysteine protease. Plant Physiol. 1991 Aug;96(4):1086–1092. doi: 10.1104/pp.96.4.1086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Qi X., Chen R., Wilson K. A., Tan-Wilson A. L. Characterization of a soybean beta-conglycinin-degrading protease cleavage site. Plant Physiol. 1994 Jan;104(1):127–133. doi: 10.1104/pp.104.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Qi X., Wilson K. A., Tan-Wilson A. L. Characterization of the Major Protease Involved in the Soybean beta-Conglycinin Storage Protein Mobilization. Plant Physiol. 1992 Jun;99(2):725–733. doi: 10.1104/pp.99.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Quail P. H., Briggs W. R. Irradiation-enhanced Phytochrome Pelletability: Requirement for Phosphorylative Energy in Vivo. Plant Physiol. 1978 Nov;62(5):773–778. doi: 10.1104/pp.62.5.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Quail P. H. Phytochrome: a light-activated molecular switch that regulates plant gene expression. Annu Rev Genet. 1991;25:389–409. doi: 10.1146/annurev.ge.25.120191.002133. [DOI] [PubMed] [Google Scholar]
  53. Rechsteiner M., Hoffman L., Dubiel W. The multicatalytic and 26 S proteases. J Biol Chem. 1993 Mar 25;268(9):6065–6068. [PubMed] [Google Scholar]
  54. Reddy A. S., Safadi F., Beyette J. R., Mykles D. L. Calcium-dependent proteinase activity in root cultures of Arabidopsis. Biochem Biophys Res Commun. 1994 Mar 30;199(3):1089–1095. doi: 10.1006/bbrc.1994.1342. [DOI] [PubMed] [Google Scholar]
  55. Rivett A. J. Proteasomes: multicatalytic proteinase complexes. Biochem J. 1993 Apr 1;291(Pt 1):1–10. doi: 10.1042/bj2910001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Satoh S., Yang S. F. S-adenosylmethionine-dependent inactivation and radiolabeling of 1-aminocyclopropane-1-carboxylate synthase isolated from tomato fruits. Plant Physiol. 1988 Sep;88(1):109–114. doi: 10.1104/pp.88.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Schaffer M. A., Fischer R. L. Analysis of mRNAs that Accumulate in Response to Low Temperature Identifies a Thiol Protease Gene in Tomato. Plant Physiol. 1988 Jun;87(2):431–436. doi: 10.1104/pp.87.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Schmidt G. W., Mishkind M. L. Rapid degradation of unassembled ribulose 1,5-bisphosphate carboxylase small subunits in chloroplasts. Proc Natl Acad Sci U S A. 1983 May;80(9):2632–2636. doi: 10.1073/pnas.80.9.2632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Schwob E., Böhm T., Mendenhall M. D., Nasmyth K. The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell. 1994 Oct 21;79(2):233–244. doi: 10.1016/0092-8674(94)90193-7. [DOI] [PubMed] [Google Scholar]
  60. Seemüller E., Lupas A., Stock D., Löwe J., Huber R., Baumeister W. Proteasome from Thermoplasma acidophilum: a threonine protease. Science. 1995 Apr 28;268(5210):579–582. doi: 10.1126/science.7725107. [DOI] [PubMed] [Google Scholar]
  61. Seufert W., Futcher B., Jentsch S. Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature. 1995 Jan 5;373(6509):78–81. doi: 10.1038/373078a0. [DOI] [PubMed] [Google Scholar]
  62. Seufert W., Jentsch S. Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. EMBO J. 1990 Feb;9(2):543–550. doi: 10.1002/j.1460-2075.1990.tb08141.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Shanklin J., Jabben M., Vierstra R. D. Red light-induced formation of ubiquitin-phytochrome conjugates: Identification of possible intermediates of phytochrome degradation. Proc Natl Acad Sci U S A. 1987 Jan;84(2):359–363. doi: 10.1073/pnas.84.2.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Shewry P. R., Napier J. A., Tatham A. S. Seed storage proteins: structures and biosynthesis. Plant Cell. 1995 Jul;7(7):945–956. doi: 10.1105/tpc.7.7.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Shirley B. W., Goodman H. M. An Arabidopsis gene homologous to mammalian and insect genes encoding the largest proteasome subunit. Mol Gen Genet. 1993 Dec;241(5-6):586–594. doi: 10.1007/BF00279901. [DOI] [PubMed] [Google Scholar]
  66. Spanu P., Felix G., Boller T. Inactivation of stress induced 1-aminocyclopropane carboxylate synthase in vivo differs from substrate-dependent inactivation in vitro. Plant Physiol. 1990 Aug;93(4):1482–1485. doi: 10.1104/pp.93.4.1482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Spanu P., Grosskopf D. G., Felix G., Boller T. The Apparent Turnover of 1-Aminocyclopropane-1-Carboxylate Synthase in Tomato Cells Is Regulated by Protein Phosphorylation and Dephosphorylation. Plant Physiol. 1994 Oct;106(2):529–535. doi: 10.1104/pp.106.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Stadtman E. R. Covalent modification reactions are marking steps in protein turnover. Biochemistry. 1990 Jul 10;29(27):6323–6331. doi: 10.1021/bi00479a001. [DOI] [PubMed] [Google Scholar]
  69. Sullivan M. L., Carpenter T. B., Vierstra R. D. Homologues of wheat ubiquitin-conjugating enzymes--TaUBC1 and TaUBC4 are encoded by small multigene families in Arabidopsis thaliana. Plant Mol Biol. 1994 Feb;24(4):651–661. doi: 10.1007/BF00023561. [DOI] [PubMed] [Google Scholar]
  70. Takeshige K., Baba M., Tsuboi S., Noda T., Ohsumi Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol. 1992 Oct;119(2):301–311. doi: 10.1083/jcb.119.2.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Wenzel T., Eckerskorn C., Lottspeich F., Baumeister W. Existence of a molecular ruler in proteasomes suggested by analysis of degradation products. FEBS Lett. 1994 Aug 1;349(2):205–209. doi: 10.1016/0014-5793(94)00665-2. [DOI] [PubMed] [Google Scholar]
  72. Wilson K. A., Papastoitsis G., Hartl P., Tan-Wilson A. L. Survey of the Proteolytic Activities Degrading the Kunitz Trypsin Inhibitor and Glycinin in Germinating Soybeans (Glycine max). Plant Physiol. 1988 Oct;88(2):355–360. doi: 10.1104/pp.88.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Wilson K. A., Tan-Wilson A. L. Characterization of the Proteinase that Initiates the Degradation of the Trypsin Inhibitor in Germinating Mung Beans (Vigna radiata). Plant Physiol. 1987 May;84(1):93–98. doi: 10.1104/pp.84.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Yaglom J., Linskens M. H., Sadis S., Rubin D. M., Futcher B., Finley D. p34Cdc28-mediated control of Cln3 cyclin degradation. Mol Cell Biol. 1995 Feb;15(2):731–741. doi: 10.1128/mcb.15.2.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Ye Z. H., Varner J. E. Gene expression patterns associated with in vitro tracheary element formation in isolated single mesophyll cells of Zinnia elegans. Plant Physiol. 1993 Nov;103(3):805–813. doi: 10.1104/pp.103.3.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Yip W. K., Dong J. G., Kenny J. W., Thompson G. A., Yang S. F. Characterization and sequencing of the active site of 1-aminocyclopropane-1-carboxylate synthase. Proc Natl Acad Sci U S A. 1990 Oct;87(20):7930–7934. doi: 10.1073/pnas.87.20.7930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Zwickl P., Grziwa A., Pühler G., Dahlmann B., Lottspeich F., Baumeister W. Primary structure of the Thermoplasma proteasome and its implications for the structure, function, and evolution of the multicatalytic proteinase. Biochemistry. 1992 Feb 4;31(4):964–972. doi: 10.1021/bi00119a004. [DOI] [PubMed] [Google Scholar]
  78. de Barros E. G., Larkins B. A. Purification and characterization of zein-degrading proteases from endosperm of germinating maize seeds. Plant Physiol. 1990 Sep;94(1):297–303. doi: 10.1104/pp.94.1.297. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES