Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1995 Jul;7(7):1039–1057. doi: 10.1105/tpc.7.7.1039

Chlorophyll Biosynthesis.

D Von Wettstein 1, S Gough 1, CG Kannangara 1
PMCID: PMC160907  PMID: 12242396

Full Text

The Full Text of this article is available as a PDF (4.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauer C. E., Bollivar D. W., Suzuki J. Y. Genetic analyses of photopigment biosynthesis in eubacteria: a guiding light for algae and plants. J Bacteriol. 1993 Jul;175(13):3919–3925. doi: 10.1128/jb.175.13.3919-3925.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beale S. I., Castelfranco P. A. The Biosynthesis of delta-Aminolevulinic Acid in Higher Plants: I. Accumulation of delta-Aminolevulinic Acid in Greening Plant Tissues. Plant Physiol. 1974 Feb;53(2):291–296. doi: 10.1104/pp.53.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beale S. I., Castelfranco P. A. The Biosynthesis of delta-Aminolevulinic Acid in Higher Plants: II. Formation of C-delta-Aminolevulinic Acid from Labeled Precursors in Greening Plant Tissues. Plant Physiol. 1974 Feb;53(2):297–303. doi: 10.1104/pp.53.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beale S. I., Gough S. P., Granick S. Biosynthesis of delta-aminolevulinic acid from the intact carbon skeleton of glutamic acid in greening barley. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2719–2723. doi: 10.1073/pnas.72.7.2719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Benli M., Schulz R., Apel K. Effect of light on the NADPH-protochlorophyllide oxidoreductase of Arabidopsis thaliana. Plant Mol Biol. 1991 Apr;16(4):615–625. doi: 10.1007/BF00023426. [DOI] [PubMed] [Google Scholar]
  6. Burke D. H., Alberti M., Hearst J. E. The Rhodobacter capsulatus chlorin reductase-encoding locus, bchA, consists of three genes, bchX, bchY, and bchZ. J Bacteriol. 1993 Apr;175(8):2407–2413. doi: 10.1128/jb.175.8.2407-2413.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Castelfranco P. A., Walker C. J., Weinstein J. D. Biosynthetic studies on chlorophylls: from protoporphyrin IX to protochlorophyllide. Ciba Found Symp. 1994;180:194–209. doi: 10.1002/9780470514535.ch11. [DOI] [PubMed] [Google Scholar]
  8. Chory J., Peto C., Feinbaum R., Pratt L., Ausubel F. Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell. 1989 Sep 8;58(5):991–999. doi: 10.1016/0092-8674(89)90950-1. [DOI] [PubMed] [Google Scholar]
  9. Dailey T. A., Meissner P., Dailey H. A. Expression of a cloned protoporphyrinogen oxidase. J Biol Chem. 1994 Jan 14;269(2):813–815. [PubMed] [Google Scholar]
  10. Forreiter C., Apel K. Light-independent and light-dependent protochlorophyllide-reducing activities and two distinct NADPH-protochlorophyllide oxidoreductase polypeptides in mountain pine (Pinus mugo). Planta. 1993;190(4):536–545. doi: 10.1007/BF00224793. [DOI] [PubMed] [Google Scholar]
  11. Gibson L. C., Hunter C. N. The bacteriochlorophyll biosynthesis gene, bchM, of Rhodobacter sphaeroides encodes S-adenosyl-L-methionine: Mg protoporphyrin IX methyltransferase. FEBS Lett. 1994 Sep 26;352(2):127–130. doi: 10.1016/0014-5793(94)00934-1. [DOI] [PubMed] [Google Scholar]
  12. Gibson L. C., Willows R. D., Kannangara C. G., von Wettstein D., Hunter C. N. Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: reconstitution of activity by combining the products of the bchH, -I, and -D genes expressed in Escherichia coli. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1941–1944. doi: 10.1073/pnas.92.6.1941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hansson M., Hederstedt L. Bacillus subtilis HemY is a peripheral membrane protein essential for protoheme IX synthesis which can oxidize coproporphyrinogen III and protoporphyrinogen IX. J Bacteriol. 1994 Oct;176(19):5962–5970. doi: 10.1128/jb.176.19.5962-5970.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hansson M., Hederstedt L. Cloning and characterization of the Bacillus subtilis hemEHY gene cluster, which encodes protoheme IX biosynthetic enzymes. J Bacteriol. 1992 Dec;174(24):8081–8093. doi: 10.1128/jb.174.24.8081-8093.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hansson M., Rutberg L., Schröder I., Hederstedt L. The Bacillus subtilis hemAXCDBL gene cluster, which encodes enzymes of the biosynthetic pathway from glutamate to uroporphyrinogen III. J Bacteriol. 1991 Apr;173(8):2590–2599. doi: 10.1128/jb.173.8.2590-2599.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hennig M., Grimm B., Jenny M., Müller R., Jansonius J. N. Crystallization and preliminary X-ray analysis of wild-type and K272A mutant glutamate 1-semialdehyde aminotransferase from Synechococcus. J Mol Biol. 1994 Sep 30;242(4):591–594. doi: 10.1006/jmbi.1994.1606. [DOI] [PubMed] [Google Scholar]
  17. Hudson A., Carpenter R., Doyle S., Coen E. S. Olive: a key gene required for chlorophyll biosynthesis in Antirrhinum majus. EMBO J. 1993 Oct;12(10):3711–3719. doi: 10.1002/j.1460-2075.1993.tb06048.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Höfgen R., Axelsen K. B., Kannangara C. G., Schüttke I., Pohlenz H. D., Willmitzer L., Grimm B., von Wettstein D. A visible marker for antisense mRNA expression in plants: inhibition of chlorophyll synthesis with a glutamate-1-semialdehyde aminotransferase antisense gene. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1726–1730. doi: 10.1073/pnas.91.5.1726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ilag L. L., Kumar A. M., Söll D. Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis. Plant Cell. 1994 Feb;6(2):265–275. doi: 10.1105/tpc.6.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jacobs J. M., Jacobs N. J. Oxidation of protoporphyrinogen to protoporphyrin, a step in chlorophyll and haem biosynthesis. Purification and partial characterization of the enzyme from barley organelles. Biochem J. 1987 May 15;244(1):219–224. doi: 10.1042/bj2440219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jaffe E. K., Volin M., Myers C. B., Abrams W. R. 5-Chloro[1,4-13C]levulinic acid modification of mammalian and bacterial porphobilinogen synthase suggests an active site containing two Zn(II). Biochemistry. 1994 Sep 27;33(38):11554–11562. doi: 10.1021/bi00204a018. [DOI] [PubMed] [Google Scholar]
  22. Jansson S. The light-harvesting chlorophyll a/b-binding proteins. Biochim Biophys Acta. 1994 Feb 8;1184(1):1–19. doi: 10.1016/0005-2728(94)90148-1. [DOI] [PubMed] [Google Scholar]
  23. Jones R. M., Jordan P. M. Purification and properties of the uroporphyrinogen decarboxylase from Rhodobacter sphaeroides. Biochem J. 1993 Aug 1;293(Pt 3):703–712. doi: 10.1042/bj2930703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kaya A. H., Plewinska M., Wong D. M., Desnick R. J., Wetmur J. G. Human delta-aminolevulinate dehydratase (ALAD) gene: structure and alternative splicing of the erythroid and housekeeping mRNAs. Genomics. 1994 Jan 15;19(2):242–248. doi: 10.1006/geno.1994.1054. [DOI] [PubMed] [Google Scholar]
  25. Kiel J. A., Ten Berge A. M., Venema G. Nucleotide sequence of the Synechococcus sp. PCC7942 hemE gene encoding the homologue of mammalian uroporphyrinogen decarboxylase. DNA Seq. 1992;2(6):415–418. doi: 10.3109/10425179209020822. [DOI] [PubMed] [Google Scholar]
  26. Kim J., Klein P. G., Mullet J. E. Ribosomes pause at specific sites during synthesis of membrane-bound chloroplast reaction center protein D1. J Biol Chem. 1991 Aug 15;266(23):14931–14938. [PubMed] [Google Scholar]
  27. Klein R. R., Mason H. S., Mullet J. E. Light-regulated translation of chloroplast proteins. I. Transcripts of psaA-psaB, psbA, and rbcL are associated with polysomes in dark-grown and illuminated barley seedlings. J Cell Biol. 1988 Feb;106(2):289–301. doi: 10.1083/jcb.106.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Louie G. V., Brownlie P. D., Lambert R., Cooper J. B., Blundell T. L., Wood S. P., Warren M. J., Woodcock S. C., Jordan P. M. Structure of porphobilinogen deaminase reveals a flexible multidomain polymerase with a single catalytic site. Nature. 1992 Sep 3;359(6390):33–39. doi: 10.1038/359033a0. [DOI] [PubMed] [Google Scholar]
  29. Madsen O., Sandal L., Sandal N. N., Marcker K. A. A soybean coproporphyrinogen oxidase gene is highly expressed in root nodules. Plant Mol Biol. 1993 Oct;23(1):35–43. doi: 10.1007/BF00021417. [DOI] [PubMed] [Google Scholar]
  30. Mitchell L. W., Jaffe E. K. Porphobilinogen synthase from Escherichia coli is a Zn(II) metalloenzyme stimulated by Mg(II). Arch Biochem Biophys. 1993 Jan;300(1):169–177. doi: 10.1006/abbi.1993.1024. [DOI] [PubMed] [Google Scholar]
  31. Nielsen O. F. Macromolecular physiology of plastids. XII. Tigrina mutants in barley: genetic, spectroscopic and structural characterization. Hereditas. 1974;76(2):269–304. doi: 10.1111/j.1601-5223.1974.tb01345.x. [DOI] [PubMed] [Google Scholar]
  32. Nielsen V. S., Mant A., Knoetzel J., Møller B. L., Robinson C. Import of barley photosystem I subunit N into the thylakoid lumen is mediated by a bipartite presequence lacking an intermediate processing site. Role of the delta pH in translocation across the thylakoid membrane. J Biol Chem. 1994 Feb 4;269(5):3762–3766. [PubMed] [Google Scholar]
  33. Orsat B., Monfort A., Chatellard P., Stutz E. Mapping and sequencing of an actively transcribed Euglena gracilis chloroplast gene (ccsA) homologous to the Arabidopsis thaliana nuclear gene cs(ch-42). FEBS Lett. 1992 Jun 1;303(2-3):181–184. doi: 10.1016/0014-5793(92)80514-h. [DOI] [PubMed] [Google Scholar]
  34. Paulsen H., Finkenzeller B., Kühlein N. Pigments induce folding of light-harvesting chlorophyll a/b-binding protein. Eur J Biochem. 1993 Aug 1;215(3):809–816. doi: 10.1111/j.1432-1033.1993.tb18096.x. [DOI] [PubMed] [Google Scholar]
  35. Pepper A., Delaney T., Washburn T., Poole D., Chory J. DET1, a negative regulator of light-mediated development and gene expression in arabidopsis, encodes a novel nuclear-localized protein. Cell. 1994 Jul 15;78(1):109–116. doi: 10.1016/0092-8674(94)90577-0. [DOI] [PubMed] [Google Scholar]
  36. Porra R. J. Labelling of chlorophylls and precursors by [2-14C]glycine and 2-[1-14C]oxoglutarate in Rhodopseudomonas spheroides and Zea mays. Resolution of the C5 and Shemin pathways of 5-aminolaevulinate biosynthesis by thin-layer radiochromatography. Eur J Biochem. 1986 Apr 1;156(1):111–121. doi: 10.1111/j.1432-1033.1986.tb09555.x. [DOI] [PubMed] [Google Scholar]
  37. Porra R. J., Schäfer W., Cmiel E., Katheder I., Scheer H. The derivation of the formyl-group oxygen of chlorophyll b in higher plants from molecular oxygen. Achievement of high enrichment of the 7-formyl-group oxygen from 18O2 in greening maize leaves. Eur J Biochem. 1994 Jan 15;219(1-2):671–679. doi: 10.1111/j.1432-1033.1994.tb19983.x. [DOI] [PubMed] [Google Scholar]
  38. Richard M., Tremblay C., Bellemare G. Chloroplastic genomes of Ginkgo biloba and Chlamydomonas moewusii contain a chlB gene encoding one subunit of a light-independent protochlorophyllide reductase. Curr Genet. 1994 Aug;26(2):159–165. doi: 10.1007/BF00313805. [DOI] [PubMed] [Google Scholar]
  39. Robinson C., Klösgen R. B. Targeting of proteins into and across the thylakoid membrane--a multitude of mechanisms. Plant Mol Biol. 1994 Oct;26(1):15–24. doi: 10.1007/BF00039516. [DOI] [PubMed] [Google Scholar]
  40. Rüdiger W., Benz J., Guthoff C. Detection and partial characterization of activity of chlorophyll synthetase in etioplast membranes. Eur J Biochem. 1980 Aug;109(1):193–200. doi: 10.1111/j.1432-1033.1980.tb04784.x. [DOI] [PubMed] [Google Scholar]
  41. Schneegurt M. A., Beale S. I. Origin of the chlorophyll b formyl oxygen in Chlorella vulgaris. Biochemistry. 1992 Dec 1;31(47):11677–11683. doi: 10.1021/bi00162a002. [DOI] [PubMed] [Google Scholar]
  42. Schulz R., Steinmüller K., Klaas M., Forreiter C., Rasmussen S., Hiller C., Apel K. Nucleotide sequence of a cDNA coding for the NADPH-protochlorophyllide oxidoreductase (PCR) of barley (Hordeum vulgare L.) and its expression in Escherichia coli. Mol Gen Genet. 1989 Jun;217(2-3):355–361. doi: 10.1007/BF02464904. [DOI] [PubMed] [Google Scholar]
  43. Sharif A. L., Smith A. G., Abell C. Isolation and characterisation of a cDNA clone for a chlorophyll synthesis enzyme from Euglena gracilis. The chloroplast enzyme hydroxymethylbilane synthase (porphobilinogen deaminase) is synthesised with a very long transit peptide in Euglena. Eur J Biochem. 1989 Sep 15;184(2):353–359. doi: 10.1111/j.1432-1033.1989.tb15026.x. [DOI] [PubMed] [Google Scholar]
  44. Stange-Thomann N., Thomann H. U., Lloyd A. J., Lyman H., Söll D. A point mutation in Euglena gracilis chloroplast tRNA(Glu) uncouples protein and chlorophyll biosynthesis. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):7947–7951. doi: 10.1073/pnas.91.17.7947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Suzuki J. Y., Bauer C. E. Light-independent chlorophyll biosynthesis: involvement of the chloroplast gene chlL (frxC). Plant Cell. 1992 Aug;4(8):929–940. doi: 10.1105/tpc.4.8.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Săsărman A., Surdeanu M., Horodniceanu T. Locus determining the synthesis of delta-aminolevulinic acid in Escherichia coli K-12. J Bacteriol. 1968 Nov;96(5):1882–1884. doi: 10.1128/jb.96.5.1882-1884.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Weinstein J. D., Beale S. I. Separate physiological roles and subcellular compartments for two tetrapyrrole biosynthetic pathways in Euglena gracilis. J Biol Chem. 1983 Jun 10;258(11):6799–6807. [PubMed] [Google Scholar]
  48. Wettstein D. V., Kahn A., Nielsen O. F., Gough S. Genetic regulation of chlorophyll synthesis analyzed with mutants in barley. Science. 1974 May 17;184(4138):800–802. doi: 10.1126/science.184.4138.800. [DOI] [PubMed] [Google Scholar]
  49. Whyte B. J., Griffiths W. T. 8-vinyl reduction and chlorophyll a biosynthesis in higher plants. Biochem J. 1993 May 1;291(Pt 3):939–944. doi: 10.1042/bj2910939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Wilks H. M., Timko M. P. A light-dependent complementation system for analysis of NADPH:protochlorophyllide oxidoreductase: identification and mutagenesis of two conserved residues that are essential for enzyme activity. Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):724–728. doi: 10.1073/pnas.92.3.724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Witty M., Wallace-Cook A. D., Albrecht H., Spano A. J., Michel H., Shabanowitz J., Hunt D. F., Timko M. P., Smith A. G. Structure and expression of chloroplast-localized porphobilinogen deaminase from pea (Pisum sativum L.) isolated by redundant polymerase chain reaction. Plant Physiol. 1993 Sep;103(1):139–147. doi: 10.1104/pp.103.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Woodcock S. C., Jordan P. M. Evidence for participation of aspartate-84 as a catalytic group at the active site of porphobilinogen deaminase obtained by site-directed mutagenesis of the hemC gene from Escherichia coli. Biochemistry. 1994 Mar 8;33(9):2688–2695. doi: 10.1021/bi00175a043. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES