Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Mar;39(3):707–713. doi: 10.1128/AAC.39.3.707

Roles of divalent cations and pH in mechanism of action of nitroxoline against Escherichia coli strains.

C Pelletier 1, P Prognon 1, P Bourlioux 1
PMCID: PMC162609  PMID: 7793877

Abstract

The antibacterial activity of nitroxoline (NIT), an antibiotic used in the treatment of acute or recurrent urinary tract infections caused by Escherichia coli, is decreased in the presence of Mg2+ and Mn2+ but not Ca2+. In order to elucidate the interaction between this drug and the divalent cations, spectrophotometric studies based on the natural absorption of the nitroxoline moiety were conducted. In the presence of the divalent metal ions, a shift in the NIT A448 suggested the formation of drug-ion complexes, for which the stability followed the order Mn2+ > Mg2+ > Ca2+. A clear correlation was found between the chelating property and antibacterial activity of NIT; both were pH dependent. A convenient colorimetric method for the determination of NIT uptake by bacterial cells was also developed. Uptake was energy independent and showed biphasic kinetics: a rapid association with cells and then a slower increase in cell-associated NIT which reached a plateau. NIT uptake was reduced in the presence of magnesium. The implications of metal ion complexation and pH on the clinical efficacy of NIT are discussed.

Full Text

The Full Text of this article is available as a PDF (251.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asscher A. W., Sussman M., Waters W. E., Davis R. H., Chick S. Urine as a medium for bacterial growth. Lancet. 1966 Nov 12;2(7472):1037–1041. doi: 10.1016/s0140-6736(66)92023-x. [DOI] [PubMed] [Google Scholar]
  2. Barbhaiya R. H., Gerber A. U., Craig W. A., Welling P. G. Influence of urinary pH on the pharmacokinetics of cinoxacin in humans and on antibacterial activity in vitro. Antimicrob Agents Chemother. 1982 Mar;21(3):472–480. doi: 10.1128/aac.21.3.472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bergogne-Berezin E., Berthelot G., Muller-Serieys C. Actualité de la nitroxoline. Pathol Biol (Paris) 1987 Jun;35(5 Pt 2):873–878. [PubMed] [Google Scholar]
  4. Blaser J., Lüthy R. Comparative study on antagonistic effects of low pH and cation supplementation on in-vitro activity of quinolones and aminoglycosides against Pseudomonas aeruginosa. J Antimicrob Chemother. 1988 Jul;22(1):15–22. doi: 10.1093/jac/22.1.15. [DOI] [PubMed] [Google Scholar]
  5. Bonissol C., Pua K., Stoïljkovic B. Activité in vitro de la nitroxoline sur les mycoplasmes uro-génitaux. Pathol Biol (Paris) 1986 Nov;34(9):1001–1005. [PubMed] [Google Scholar]
  6. Bourlioux P., Botto H., Karam D., Amgar A., Camey M. Inhibition de l'adhérence bactérienne par la nitroxoline sur support cellulaire et sur sonde urinaire. Pathol Biol (Paris) 1989 May;37(5):451–454. [PubMed] [Google Scholar]
  7. Bourlioux P., Karam D., Amgar A., Perdiz M. Relations entre les propriétés de chélation de la nitroxoline, l'hydrophobicite de surface et l'inhibition de l'adhérence bactérienne. Pathol Biol (Paris) 1989 Jun;37(5 Pt 2):600–604. [PubMed] [Google Scholar]
  8. Cancet B., Amgar A. Activité antifongique de la nitroxoline in vitro. Résultats cliniques préliminaires. Pathol Biol (Paris) 1987 Jun;35(5 Pt 2):879–881. [PubMed] [Google Scholar]
  9. Chapman J. S., Georgopapadakou N. H. Fluorometric assay for fleroxacin uptake by bacterial cells. Antimicrob Agents Chemother. 1989 Jan;33(1):27–29. doi: 10.1128/aac.33.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chapman J. S., Georgopapadakou N. H. Routes of quinolone permeation in Escherichia coli. Antimicrob Agents Chemother. 1988 Apr;32(4):438–442. doi: 10.1128/aac.32.4.438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Evans R. A., Watson L. Urinary excretion of magnesium in man. Lancet. 1966 Mar 5;1(7436):522–523. doi: 10.1016/s0140-6736(66)91528-5. [DOI] [PubMed] [Google Scholar]
  12. Flor S., Guay D. R., Opsahl J. A., Tack K., Matzke G. R. Effects of magnesium-aluminum hydroxide and calcium carbonate antacids on bioavailability of ofloxacin. Antimicrob Agents Chemother. 1990 Dec;34(12):2436–2438. doi: 10.1128/aac.34.12.2436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fraser R. S., Creanor J. Rapid and selective inhibition of RNA synthesis in yeast by 8-hydroxyquinoline. Eur J Biochem. 1974 Jul 1;46(1):67–73. doi: 10.1111/j.1432-1033.1974.tb03597.x. [DOI] [PubMed] [Google Scholar]
  14. Fraser R. S., Creanor J. The mechanism of inhibition of ribonucleic acid synthesis by 8-hydroxyquinoline and the antibiotic lomofungin. Biochem J. 1975 Jun;147(3):401–410. doi: 10.1042/bj1470401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Glass K. A., Loeffelholz J. M., Ford J. P., Doyle M. P. Fate of Escherichia coli O157:H7 as affected by pH or sodium chloride and in fermented, dry sausage. Appl Environ Microbiol. 1992 Aug;58(8):2513–2516. doi: 10.1128/aem.58.8.2513-2516.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gudmundsson A., Erlendsdottir H., Gottfredsson M., Gudmundsson S. Impact of pH and cationic supplementation on in vitro postantibiotic effect. Antimicrob Agents Chemother. 1991 Dec;35(12):2617–2624. doi: 10.1128/aac.35.12.2617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hirai K., Aoyama H., Irikura T., Iyobe S., Mitsuhashi S. Differences in susceptibility to quinolones of outer membrane mutants of Salmonella typhimurium and Escherichia coli. Antimicrob Agents Chemother. 1986 Mar;29(3):535–538. doi: 10.1128/aac.29.3.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hull R. A., Gill R. E., Hsu P., Minshew B. H., Falkow S. Construction and expression of recombinant plasmids encoding type 1 or D-mannose-resistant pili from a urinary tract infection Escherichia coli isolate. Infect Immun. 1981 Sep;33(3):933–938. doi: 10.1128/iai.33.3.933-938.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Iravani A., Welty G. S., Newton B. R., Richard G. A. Effects of changes in pH, medium, and inoculum size on the in vitro activity of amifloxacin against urinary isolates of Staphylococcus saprophyticus and Escherichia coli. Antimicrob Agents Chemother. 1985 Apr;27(4):449–451. doi: 10.1128/aac.27.4.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jacobs M. R., Robinson R. G., Koornhof H. J. Antibacterial activity of nitroxoline and sulphamethizole alone and in combination in urinary tract infections. S Afr Med J. 1978 Dec 2;54(23):959–962. [PubMed] [Google Scholar]
  21. Karam D., Amgar A., Bourlioux P. Inhibition de l'adhésion bactérienne de souches d'Escherichia coli uropathogènes par des urines de patients traités par la nitroxoline. Pathol Biol (Paris) 1988 May;36(5):452–455. [PubMed] [Google Scholar]
  22. König C., Simmen H. P., Blaser J. Effect of pathological changes of pH, pO2 and pCO2 on the activity of antimicrobial agents in vitro. Eur J Clin Microbiol Infect Dis. 1993 Jul;12(7):519–526. doi: 10.1007/BF01970957. [DOI] [PubMed] [Google Scholar]
  23. Lazzaroni M., Imbimbo B. P., Bargiggia S., Sangaletti O., Dal Bo L., Broccali G., Bianchi Porro G. Effects of magnesium-aluminum hydroxide antacid on absorption of rufloxacin. Antimicrob Agents Chemother. 1993 Oct;37(10):2212–2216. doi: 10.1128/aac.37.10.2212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McMurry L. M., Cullinane J. C., Petrucci R. E., Jr, Levy S. B. Active uptake of tetracycline by membrane vesicles from susceptible Escherichia coli. Antimicrob Agents Chemother. 1981 Sep;20(3):307–313. doi: 10.1128/aac.20.3.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nikaido H., Thanassi D. G. Penetration of lipophilic agents with multiple protonation sites into bacterial cells: tetracyclines and fluoroquinolones as examples. Antimicrob Agents Chemother. 1993 Jul;37(7):1393–1399. doi: 10.1128/aac.37.7.1393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nikaido H., Vaara M. Molecular basis of bacterial outer membrane permeability. Microbiol Rev. 1985 Mar;49(1):1–32. doi: 10.1128/mr.49.1.1-32.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pelletier C., Bourlioux P., van Heijenoort J. Effects of sub-minimal inhibitory concentrations of EDTA on growth of Escherichia coli and the release of lipopolysaccharide. FEMS Microbiol Lett. 1994 Apr 1;117(2):203–206. doi: 10.1111/j.1574-6968.1994.tb06765.x. [DOI] [PubMed] [Google Scholar]
  28. Peterson L. R., Shanholtzer C. J. Tests for bactericidal effects of antimicrobial agents: technical performance and clinical relevance. Clin Microbiol Rev. 1992 Oct;5(4):420–432. doi: 10.1128/cmr.5.4.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pérez-Giraldo C., Hurtado C., Morán F. J., Blanco M. T., Gómez-García A. C. The influence of magnesium on ofloxacin activity against different growth phases of Escherichia coli. J Antimicrob Chemother. 1990 Jun;25(6):1021–1022. doi: 10.1093/jac/25.6.1021. [DOI] [PubMed] [Google Scholar]
  30. Retsema J. A., Brennan L. A., Girard A. E. Effects of environmental factors on the in vitro potency of azithromycin. Eur J Clin Microbiol Infect Dis. 1991 Oct;10(10):834–842. doi: 10.1007/BF01975836. [DOI] [PubMed] [Google Scholar]
  31. Sherris J. C. Problems in in vitro determination of antibiotic tolerance in clinical isolates. Antimicrob Agents Chemother. 1986 Nov;30(5):633–637. doi: 10.1128/aac.30.5.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Small P., Blankenhorn D., Welty D., Zinser E., Slonczewski J. L. Acid and base resistance in Escherichia coli and Shigella flexneri: role of rpoS and growth pH. J Bacteriol. 1994 Mar;176(6):1729–1737. doi: 10.1128/jb.176.6.1729-1737.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tanaka M., Kurata T., Fujisawa C., Ohshima Y., Aoki H., Okazaki O., Hakusui H. Mechanistic study of inhibition of levofloxacin absorption by aluminum hydroxide. Antimicrob Agents Chemother. 1993 Oct;37(10):2173–2178. doi: 10.1128/aac.37.10.2173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Warner V. D., Musto J. D., Sane J. N., Kim K. H., Grunewald G. L. Quantitative structure-activity relationships for 5-substituted 8-hydroxyquinolines as inhibitors of dental plaque. J Med Chem. 1977 Jan;20(1):92–96. doi: 10.1021/jm00211a019. [DOI] [PubMed] [Google Scholar]
  35. Yamaguchi A., Ohmori H., Kaneko-Ohdera M., Nomura T., Sawai T. Delta pH-dependent accumulation of tetracycline in Escherichia coli. Antimicrob Agents Chemother. 1991 Jan;35(1):53–56. doi: 10.1128/aac.35.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zilberstein D., Agmon V., Schuldiner S., Padan E. Escherichia coli intracellular pH, membrane potential, and cell growth. J Bacteriol. 1984 Apr;158(1):246–252. doi: 10.1128/jb.158.1.246-252.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES