Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Jan;41(1):193–195. doi: 10.1128/aac.41.1.193

Induction of DnaK and GroEL heat shock proteins by fluoroquinolones in Escherichia coli.

T Mizushima 1, M Matsuo 1, K Sekimizu 1
PMCID: PMC163685  PMID: 8980780

Abstract

Various fluoroquinolones (norfloxacin, enoxacin, ofloxacin, levofloxacin, and sparfloxacin) induce DnaK and GroEL heat shock proteins in Escherichia coli. The induction is transient, consistent with the kinetics of cellular DNA relaxation. The concentrations of fluoroquinolones required for induction are similar to those required for DNA relaxation and much higher than those required for cell death.

Full Text

The Full Text of this article is available as a PDF (275.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachmann B. J. Linkage map of Escherichia coli K-12, edition 7. Microbiol Rev. 1983 Jun;47(2):180–230. doi: 10.1128/mr.47.2.180-230.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cambau E., Gutmann L. Mechanisms of resistance to quinolones. Drugs. 1993;45 (Suppl 3):15–23. doi: 10.2165/00003495-199300453-00005. [DOI] [PubMed] [Google Scholar]
  3. Chirico W. J., Waters M. G., Blobel G. 70K heat shock related proteins stimulate protein translocation into microsomes. Nature. 1988 Apr 28;332(6167):805–810. doi: 10.1038/332805a0. [DOI] [PubMed] [Google Scholar]
  4. Deshaies R. J., Koch B. D., Werner-Washburne M., Craig E. A., Schekman R. A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature. 1988 Apr 28;332(6167):800–805. doi: 10.1038/332800a0. [DOI] [PubMed] [Google Scholar]
  5. Drlica K., Kreiswirth B. 4-quinolones and the physiology of DNA gyrase. Adv Pharmacol. 1994;29A:263–283. doi: 10.1016/s1054-3589(08)60549-9. [DOI] [PubMed] [Google Scholar]
  6. Gaitanaris G. A., Papavassiliou A. G., Rubock P., Silverstein S. J., Gottesman M. E. Renaturation of denatured lambda repressor requires heat shock proteins. Cell. 1990 Jun 15;61(6):1013–1020. doi: 10.1016/0092-8674(90)90066-n. [DOI] [PubMed] [Google Scholar]
  7. Grossman A. D., Erickson J. W., Gross C. A. The htpR gene product of E. coli is a sigma factor for heat-shock promoters. Cell. 1984 Sep;38(2):383–390. doi: 10.1016/0092-8674(84)90493-8. [DOI] [PubMed] [Google Scholar]
  8. Grossman A. D., Zhou Y. N., Gross C., Heilig J., Christie G. E., Calendar R. Mutations in the rpoH (htpR) gene of Escherichia coli K-12 phenotypically suppress a temperature-sensitive mutant defective in the sigma 70 subunit of RNA polymerase. J Bacteriol. 1985 Mar;161(3):939–943. doi: 10.1128/jb.161.3.939-943.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hooper D. C. Quinolone mode of action--new aspects. Drugs. 1993;45 (Suppl 3):8–14. doi: 10.2165/00003495-199300453-00004. [DOI] [PubMed] [Google Scholar]
  10. Kaneko T., Mizushima T., Ohtsuka Y., Kurokawa K., Kataoka K., Miki T., Sekimizu K. Co-induction of DNA relaxation and synthesis of DnaK and GroEL proteins in Escherichia coli by expression of LetD (CcdB) protein, an inhibitor of DNA gyrase encoded by the F factor. Mol Gen Genet. 1996 Mar 20;250(5):593–600. doi: 10.1007/BF02174447. [DOI] [PubMed] [Google Scholar]
  11. Landick R., Vaughn V., Lau E. T., VanBogelen R. A., Erickson J. W., Neidhardt F. C. Nucleotide sequence of the heat shock regulatory gene of E. coli suggests its protein product may be a transcription factor. Cell. 1984 Aug;38(1):175–182. doi: 10.1016/0092-8674(84)90538-5. [DOI] [PubMed] [Google Scholar]
  12. Lindquist S. The heat-shock response. Annu Rev Biochem. 1986;55:1151–1191. doi: 10.1146/annurev.bi.55.070186.005443. [DOI] [PubMed] [Google Scholar]
  13. Matsuo M., Ohtsuka Y., Kataoka K., Mizushima T., Sekimizu K. Transient relaxation of plasmid DNA in Escherichia coli by fluoroquinolones. J Pharm Pharmacol. 1996 Sep;48(9):985–987. doi: 10.1111/j.2042-7158.1996.tb06018.x. [DOI] [PubMed] [Google Scholar]
  14. Mizushima T., Natori S., Sekimizu K. Relaxation of supercoiled DNA associated with induction of heat shock proteins in Escherichia coli. Mol Gen Genet. 1993 Apr;238(1-2):1–5. doi: 10.1007/BF00279523. [DOI] [PubMed] [Google Scholar]
  15. Mizushima T., Ohtsuka Y., Miki T., Sekimizu K. Temperature shift-up leads to simultaneous and continuous plasmid DNA relaxation and induction of DnaK and GroEL proteins in anaerobically growing Escherichia coli cells. FEMS Microbiol Lett. 1994 Sep 1;121(3):333–336. doi: 10.1111/j.1574-6968.1994.tb07122.x. [DOI] [PubMed] [Google Scholar]
  16. Mizushima T., Tomura A., Shinpuku T., Miki T., Sekimizu K. Loss of flagellation in dnaA mutants of Escherichia coli. J Bacteriol. 1994 Sep;176(17):5544–5546. doi: 10.1128/jb.176.17.5544-5546.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Neidhardt F. C., VanBogelen R. A. Positive regulatory gene for temperature-controlled proteins in Escherichia coli. Biochem Biophys Res Commun. 1981 May 29;100(2):894–900. doi: 10.1016/s0006-291x(81)80257-4. [DOI] [PubMed] [Google Scholar]
  18. Neidhardt F. C., VanBogelen R. A., Vaughn V. The genetics and regulation of heat-shock proteins. Annu Rev Genet. 1984;18:295–329. doi: 10.1146/annurev.ge.18.120184.001455. [DOI] [PubMed] [Google Scholar]
  19. Ogata Y., Mizushima T., Kataoka K., Miki T., Sekimizu K. Identification of DNA topoisomerases involved in immediate and transient DNA relaxation induced by heat shock in Escherichia coli. Mol Gen Genet. 1994 Sep 1;244(5):451–455. doi: 10.1007/BF00583895. [DOI] [PubMed] [Google Scholar]
  20. Pruss G. J. DNA topoisomerase I mutants. Increased heterogeneity in linking number and other replicon-dependent changes in DNA supercoiling. J Mol Biol. 1985 Sep 5;185(1):51–63. doi: 10.1016/0022-2836(85)90182-2. [DOI] [PubMed] [Google Scholar]
  21. Shen L. L. Molecular mechanisms of DNA gyrase inhibition by quinolone antibacterials. Adv Pharmacol. 1994;29A:285–304. doi: 10.1016/s1054-3589(08)60550-5. [DOI] [PubMed] [Google Scholar]
  22. Shinpuku T., Mizushima T., Guo L., Miki T., Sekimizu K. Phenotypes of dnaA mutants of Escherichia coli sensitive to detergents and organic solvents. Biochem Biophys Res Commun. 1995 Jul 6;212(1):84–89. doi: 10.1006/bbrc.1995.1939. [DOI] [PubMed] [Google Scholar]
  23. Smith J. T. The mode of action of 4-quinolones and possible mechanisms of resistance. J Antimicrob Chemother. 1986 Nov;18 (Suppl 500):21–29. doi: 10.1093/jac/18.supplement_d.21. [DOI] [PubMed] [Google Scholar]
  24. Tanji K., Mizushima T., Natori S., Sekimizu K. Induction by psychotropic drugs and local anesthetics of DnaK and GroEL proteins in Escherichia coli. Biochim Biophys Acta. 1992 Jan 6;1129(2):172–176. doi: 10.1016/0167-4781(92)90483-g. [DOI] [PubMed] [Google Scholar]
  25. Tobe T., Ito K., Yura T. Isolation and physical mapping of temperature-sensitive mutants defective in heat-shock induction of proteins in Escherichia coli. Mol Gen Genet. 1984;195(1-2):10–16. doi: 10.1007/BF00332716. [DOI] [PubMed] [Google Scholar]
  26. VanBogelen R. A., Kelley P. M., Neidhardt F. C. Differential induction of heat shock, SOS, and oxidation stress regulons and accumulation of nucleotides in Escherichia coli. J Bacteriol. 1987 Jan;169(1):26–32. doi: 10.1128/jb.169.1.26-32.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wolfson J. S., Hooper D. C. Fluoroquinolone antimicrobial agents. Clin Microbiol Rev. 1989 Oct;2(4):378–424. doi: 10.1128/cmr.2.4.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yamamori T., Yura T. Genetic control of heat-shock protein synthesis and its bearing on growth and thermal resistance in Escherichia coli K-12. Proc Natl Acad Sci U S A. 1982 Feb;79(3):860–864. doi: 10.1073/pnas.79.3.860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yura T., Tobe T., Ito K., Osawa T. Heat shock regulatory gene (htpR) of Escherichia coli is required for growth at high temperature but is dispensable at low temperature. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6803–6807. doi: 10.1073/pnas.81.21.6803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zylicz M., Ang D., Liberek K., Georgopoulos C. Initiation of lambda DNA replication with purified host- and bacteriophage-encoded proteins: the role of the dnaK, dnaJ and grpE heat shock proteins. EMBO J. 1989 May;8(5):1601–1608. doi: 10.1002/j.1460-2075.1989.tb03544.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES