Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2000 Mar;108(Suppl 1):5–11. doi: 10.1289/ehp.00108s15

Imprinted genes as potential genetic and epigenetic toxicologic targets.

S K Murphy 1, R L Jirtle 1
PMCID: PMC1637779  PMID: 10698719

Abstract

Genomic imprinting is an epigenetic phenomenon in eutherian mammals that results in the differential expression of the paternally and maternally inherited alleles of a gene. Imprinted genes are necessary for normal mammalian development. This requirement has been proposed to have evolved because of an interparental genetic battle for the utilization of maternal resources during gestation and postnatally. The nonrandom requisite for monoallelic expression of a subset of genes has also resulted in the formation of susceptibility loci for neurobehavioral disorders, developmental disorders, and cancer. Since imprinting involves both cytosine methylation within CpG islands and changes in chromatin structure, imprinted genes are potential targets for dysregulation by epigenetic toxicants that modify DNA methylation and histone acetylation.

Full text

PDF
5

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albrecht U., Sutcliffe J. S., Cattanach B. M., Beechey C. V., Armstrong D., Eichele G., Beaudet A. L. Imprinted expression of the murine Angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons. Nat Genet. 1997 Sep;17(1):75–78. doi: 10.1038/ng0997-75. [DOI] [PubMed] [Google Scholar]
  2. Asherson P., Walsh C., Williams J., Sargeant M., Taylor C., Clements A., Gill M., Owen M., McGuffin P. Imprinting and anticipation. Are they relevant to genetic studies of schizophrenia? Br J Psychiatry. 1994 May;164(5):619–624. doi: 10.1192/bjp.164.5.619. [DOI] [PubMed] [Google Scholar]
  3. Barlow D. P. Gametic imprinting in mammals. Science. 1995 Dec 8;270(5242):1610–1613. doi: 10.1126/science.270.5242.1610. [DOI] [PubMed] [Google Scholar]
  4. Barlow D. P., Stöger R., Herrmann B. G., Saito K., Schweifer N. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature. 1991 Jan 3;349(6304):84–87. doi: 10.1038/349084a0. [DOI] [PubMed] [Google Scholar]
  5. Bartolomei M. S., Tilghman S. M. Genomic imprinting in mammals. Annu Rev Genet. 1997;31:493–525. doi: 10.1146/annurev.genet.31.1.493. [DOI] [PubMed] [Google Scholar]
  6. Bartolomei M. S., Webber A. L., Brunkow M. E., Tilghman S. M. Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev. 1993 Sep;7(9):1663–1673. doi: 10.1101/gad.7.9.1663. [DOI] [PubMed] [Google Scholar]
  7. Bartolomei M. S., Zemel S., Tilghman S. M. Parental imprinting of the mouse H19 gene. Nature. 1991 May 9;351(6322):153–155. doi: 10.1038/351153a0. [DOI] [PubMed] [Google Scholar]
  8. Bates P., Fisher R., Ward A., Richardson L., Hill D. J., Graham C. F. Mammary cancer in transgenic mice expressing insulin-like growth factor II (IGF-II) Br J Cancer. 1995 Nov;72(5):1189–1193. doi: 10.1038/bjc.1995.484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bestor T. H., Tycko B. Creation of genomic methylation patterns. Nat Genet. 1996 Apr;12(4):363–367. doi: 10.1038/ng0496-363. [DOI] [PubMed] [Google Scholar]
  10. Bestor T., Laudano A., Mattaliano R., Ingram V. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol. 1988 Oct 20;203(4):971–983. doi: 10.1016/0022-2836(88)90122-2. [DOI] [PubMed] [Google Scholar]
  11. Birger Y., Shemer R., Perk J., Razin A. The imprinting box of the mouse Igf2r gene. Nature. 1999 Jan 7;397(6714):84–88. doi: 10.1038/16291. [DOI] [PubMed] [Google Scholar]
  12. Brockdorff N., Duthie S. M. X chromosome inactivation and the Xist gene. Cell Mol Life Sci. 1998 Jan;54(1):104–112. doi: 10.1007/s000180050129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Brown K. W., Villar A. J., Bickmore W., Clayton-Smith J., Catchpoole D., Maher E. R., Reik W. Imprinting mutation in the Beckwith-Wiedemann syndrome leads to biallelic IGF2 expression through an H19-independent pathway. Hum Mol Genet. 1996 Dec;5(12):2027–2032. doi: 10.1093/hmg/5.12.2027. [DOI] [PubMed] [Google Scholar]
  14. Brun L. O., Stuart J., Gaudichon V., Aronstein K., French-Constant R. H. Functional haplodiploidy: a mechanism for the spread of insecticide resistance in an important international insect pest. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9861–9865. doi: 10.1073/pnas.92.21.9861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Buiting K., Saitoh S., Gross S., Dittrich B., Schwartz S., Nicholls R. D., Horsthemke B. Inherited microdeletions in the Angelman and Prader-Willi syndromes define an imprinting centre on human chromosome 15. Nat Genet. 1995 Apr;9(4):395–400. doi: 10.1038/ng0495-395. [DOI] [PubMed] [Google Scholar]
  16. Bunzel R., Blümcke I., Cichon S., Normann S., Schramm J., Propping P., Nöthen M. M. Polymorphic imprinting of the serotonin-2A (5-HT2A) receptor gene in human adult brain. Brain Res Mol Brain Res. 1998 Aug 15;59(1):90–92. doi: 10.1016/s0169-328x(98)00146-6. [DOI] [PubMed] [Google Scholar]
  17. Cameron E. E., Bachman K. E., Myöhänen S., Herman J. G., Baylin S. B. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet. 1999 Jan;21(1):103–107. doi: 10.1038/5047. [DOI] [PubMed] [Google Scholar]
  18. Catchpoole D., Lam W. W., Valler D., Temple I. K., Joyce J. A., Reik W., Schofield P. N., Maher E. R. Epigenetic modification and uniparental inheritance of H19 in Beckwith-Wiedemann syndrome. J Med Genet. 1997 May;34(5):353–359. doi: 10.1136/jmg.34.5.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Cattanach B. M. Parental origin effects in mice. J Embryol Exp Morphol. 1986 Oct;97 (Suppl):137–150. [PubMed] [Google Scholar]
  20. Cerda S., Weitzman S. A. Influence of oxygen radical injury on DNA methylation. Mutat Res. 1997 Apr;386(2):141–152. doi: 10.1016/s1383-5742(96)00050-6. [DOI] [PubMed] [Google Scholar]
  21. Chaillet J. R., Bader D. S., Leder P. Regulation of genomic imprinting by gametic and embryonic processes. Genes Dev. 1995 May 15;9(10):1177–1187. doi: 10.1101/gad.9.10.1177. [DOI] [PubMed] [Google Scholar]
  22. Chandra H. S., Brown S. W. Chromosome imprinting and the mammalian X chromosome. Nature. 1975 Jan 17;253(5488):165–168. doi: 10.1038/253165a0. [DOI] [PubMed] [Google Scholar]
  23. Constância M., Pickard B., Kelsey G., Reik W. Imprinting mechanisms. Genome Res. 1998 Sep;8(9):881–900. doi: 10.1101/gr.8.9.881. [DOI] [PubMed] [Google Scholar]
  24. Cook E. H., Jr, Lindgren V., Leventhal B. L., Courchesne R., Lincoln A., Shulman C., Lord C., Courchesne E. Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. Am J Hum Genet. 1997 Apr;60(4):928–934. [PMC free article] [PubMed] [Google Scholar]
  25. Corley-Smith G. E., Lim C. J., Brandhorst B. P. Production of androgenetic zebrafish (Danio rerio). Genetics. 1996 Apr;142(4):1265–1276. doi: 10.1093/genetics/142.4.1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Counts J. L., Goodman J. I. Alterations in DNA methylation may play a variety of roles in carcinogenesis. Cell. 1995 Oct 6;83(1):13–15. doi: 10.1016/0092-8674(95)90228-7. [DOI] [PubMed] [Google Scholar]
  27. Crouse H V. The Controlling Element in Sex Chromosome Behavior in Sciara. Genetics. 1960 Oct;45(10):1429–1443. doi: 10.1093/genetics/45.10.1429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Cui H., Horon I. L., Ohlsson R., Hamilton S. R., Feinberg A. P. Loss of imprinting in normal tissue of colorectal cancer patients with microsatellite instability. Nat Med. 1998 Nov;4(11):1276–1280. doi: 10.1038/3260. [DOI] [PubMed] [Google Scholar]
  29. Czech M. P., Lewis R. E., Corvera S. Multifunctional glycoprotein receptors for insulin and the insulin-like growth factors. Ciba Found Symp. 1989;145:27–44. doi: 10.1002/9780470513828.ch3. [DOI] [PubMed] [Google Scholar]
  30. Dao D., Frank D., Qian N., O'Keefe D., Vosatka R. J., Walsh C. P., Tycko B. IMPT1, an imprinted gene similar to polyspecific transporter and multi-drug resistance genes. Hum Mol Genet. 1998 Apr;7(4):597–608. doi: 10.1093/hmg/7.4.597. [DOI] [PubMed] [Google Scholar]
  31. Darkin-Rattray S. J., Gurnett A. M., Myers R. W., Dulski P. M., Crumley T. M., Allocco J. J., Cannova C., Meinke P. T., Colletti S. L., Bednarek M. A. Apicidin: a novel antiprotozoal agent that inhibits parasite histone deacetylase. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13143–13147. doi: 10.1073/pnas.93.23.13143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. De Souza A. T., Hankins G. R., Washington M. K., Fine R. L., Orton T. C., Jirtle R. L. Frequent loss of heterozygosity on 6q at the mannose 6-phosphate/insulin-like growth factor II receptor locus in human hepatocellular tumors. Oncogene. 1995 May 4;10(9):1725–1729. [PubMed] [Google Scholar]
  33. De Souza A. T., Hankins G. R., Washington M. K., Orton T. C., Jirtle R. L. M6P/IGF2R gene is mutated in human hepatocellular carcinomas with loss of heterozygosity. Nat Genet. 1995 Dec;11(4):447–449. doi: 10.1038/ng1295-447. [DOI] [PubMed] [Google Scholar]
  34. DeChiara T. M., Efstratiadis A., Robertson E. J. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature. 1990 May 3;345(6270):78–80. doi: 10.1038/345078a0. [DOI] [PubMed] [Google Scholar]
  35. Dittrich B., Buiting K., Korn B., Rickard S., Buxton J., Saitoh S., Nicholls R. D., Poustka A., Winterpacht A., Zabel B. Imprint switching on human chromosome 15 may involve alternative transcripts of the SNRPN gene. Nat Genet. 1996 Oct;14(2):163–170. doi: 10.1038/ng1096-163. [DOI] [PubMed] [Google Scholar]
  36. Falls J. G., Pulford D. J., Wylie A. A., Jirtle R. L. Genomic imprinting: implications for human disease. Am J Pathol. 1999 Mar;154(3):635–647. doi: 10.1016/S0002-9440(10)65309-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Fang P., Lev-Lehman E., Tsai T. F., Matsuura T., Benton C. S., Sutcliffe J. S., Christian S. L., Kubota T., Halley D. J., Meijers-Heijboer H. The spectrum of mutations in UBE3A causing Angelman syndrome. Hum Mol Genet. 1999 Jan;8(1):129–135. doi: 10.1093/hmg/8.1.129. [DOI] [PubMed] [Google Scholar]
  38. Feil R., Kelsey G. Genomic imprinting: a chromatin connection. Am J Hum Genet. 1997 Dec;61(6):1213–1219. doi: 10.1086/301655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Ferguson-Smith A. C., Sasaki H., Cattanach B. M., Surani M. A. Parental-origin-specific epigenetic modification of the mouse H19 gene. Nature. 1993 Apr 22;362(6422):751–755. doi: 10.1038/362751a0. [DOI] [PubMed] [Google Scholar]
  40. Frasca F., Pandini G., Scalia P., Sciacca L., Mineo R., Costantino A., Goldfine I. D., Belfiore A., Vigneri R. Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol. 1999 May;19(5):3278–3288. doi: 10.1128/mcb.19.5.3278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Färber C., Dittrich B., Buiting K., Horsthemke B. The chromosome 15 imprinting centre (IC) region has undergone multiple duplication events and contains an upstream exon of SNRPN that is deleted in all Angelman syndrome patients with an IC microdeletion. Hum Mol Genet. 1999 Feb;8(2):337–343. doi: 10.1093/hmg/8.2.337. [DOI] [PubMed] [Google Scholar]
  42. Giannoukakis N., Deal C., Paquette J., Kukuvitis A., Polychronakos C. Polymorphic functional imprinting of the human IGF2 gene among individuals, in blood cells, is associated with H19 expression. Biochem Biophys Res Commun. 1996 Mar 27;220(3):1014–1019. doi: 10.1006/bbrc.1996.0524. [DOI] [PubMed] [Google Scholar]
  43. Glenn C. C., Nicholls R. D., Robinson W. P., Saitoh S., Niikawa N., Schinzel A., Horsthemke B., Driscoll D. J. Modification of 15q11-q13 DNA methylation imprints in unique Angelman and Prader-Willi patients. Hum Mol Genet. 1993 Sep;2(9):1377–1382. doi: 10.1093/hmg/2.9.1377. [DOI] [PubMed] [Google Scholar]
  44. Gray T. A., Saitoh S., Nicholls R. D. An imprinted, mammalian bicistronic transcript encodes two independent proteins. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5616–5621. doi: 10.1073/pnas.96.10.5616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Grigoroiu-Serbanescu M., Wickramaratne P. J., Hodge S. E., Milea S., Mihailescu R. Genetic anticipation and imprinting in bipolar I illness. Br J Psychiatry. 1997 Feb;170:162–166. doi: 10.1192/bjp.170.2.162. [DOI] [PubMed] [Google Scholar]
  46. Haig D., Graham C. Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell. 1991 Mar 22;64(6):1045–1046. doi: 10.1016/0092-8674(91)90256-x. [DOI] [PubMed] [Google Scholar]
  47. Haig D. Multiple paternity and genomic imprinting. Genetics. 1999 Mar;151(3):1229–1231. doi: 10.1093/genetics/151.3.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Hall J. G. Genomic imprinting: nature and clinical relevance. Annu Rev Med. 1997;48:35–44. doi: 10.1146/annurev.med.48.1.35. [DOI] [PubMed] [Google Scholar]
  49. Hankins G. R., De Souza A. T., Bentley R. C., Patel M. R., Marks J. R., Iglehart J. D., Jirtle R. L. M6P/IGF2 receptor: a candidate breast tumor suppressor gene. Oncogene. 1996 May 2;12(9):2003–2009. [PubMed] [Google Scholar]
  50. Hatada I., Kitagawa K., Yamaoka T., Wang X., Arai Y., Hashido K., Ohishi S., Masuda J., Ogata J., Mukai T. Allele-specific methylation and expression of an imprinted U2af1-rs1 (SP2) gene. Nucleic Acids Res. 1995 Jan 11;23(1):36–41. doi: 10.1093/nar/23.1.36. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Hatada I., Mukai T. Genomic imprinting of p57KIP2, a cyclin-dependent kinase inhibitor, in mouse. Nat Genet. 1995 Oct;11(2):204–206. doi: 10.1038/ng1095-204. [DOI] [PubMed] [Google Scholar]
  52. Hatada I., Sugama T., Mukai T. A new imprinted gene cloned by a methylation-sensitive genome scanning method. Nucleic Acids Res. 1993 Dec 11;21(24):5577–5582. doi: 10.1093/nar/21.24.5577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Hayashizaki Y., Shibata H., Hirotsune S., Sugino H., Okazaki Y., Sasaki N., Hirose K., Imoto H., Okuizumi H., Muramatsu M. Identification of an imprinted U2af binding protein related sequence on mouse chromosome 11 using the RLGS method. Nat Genet. 1994 Jan;6(1):33–40. doi: 10.1038/ng0194-33. [DOI] [PubMed] [Google Scholar]
  54. Hendrich B. D., Willard H. F. Epigenetic regulation of gene expression: the effect of altered chromatin structure from yeast to mammals. Hum Mol Genet. 1995;4(Spec No):1765–1777. doi: 10.1093/hmg/4.suppl_1.1765. [DOI] [PubMed] [Google Scholar]
  55. Hu J. F., Oruganti H., Vu T. H., Hoffman A. R. The role of histone acetylation in the allelic expression of the imprinted human insulin-like growth factor II gene. Biochem Biophys Res Commun. 1998 Oct 20;251(2):403–408. doi: 10.1006/bbrc.1998.9401. [DOI] [PubMed] [Google Scholar]
  56. Hu J. F., Vu T. H., Hoffman A. R. Promoter-specific modulation of insulin-like growth factor II genomic imprinting by inhibitors of DNA methylation. J Biol Chem. 1996 Jul 26;271(30):18253–18262. doi: 10.1074/jbc.271.30.18253. [DOI] [PubMed] [Google Scholar]
  57. Hurst L. D., McVean G. T. Growth effects of uniparental disomies and the conflict theory of genomic imprinting. Trends Genet. 1997 Nov;13(11):436–443. doi: 10.1016/s0168-9525(97)01273-0. [DOI] [PubMed] [Google Scholar]
  58. Jaenisch R., Schnieke A., Harbers K. Treatment of mice with 5-azacytidine efficiently activates silent retroviral genomes in different tissues. Proc Natl Acad Sci U S A. 1985 Mar;82(5):1451–1455. doi: 10.1073/pnas.82.5.1451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Jinno Y., Yun K., Nishiwaki K., Kubota T., Ogawa O., Reeve A. E., Niikawa N. Mosaic and polymorphic imprinting of the WT1 gene in humans. Nat Genet. 1994 Mar;6(3):305–309. doi: 10.1038/ng0394-305. [DOI] [PubMed] [Google Scholar]
  60. Jirtle R. L. Genomic imprinting and cancer. Exp Cell Res. 1999 Apr 10;248(1):18–24. doi: 10.1006/excr.1999.4453. [DOI] [PubMed] [Google Scholar]
  61. Jones P. A., Laird P. W. Cancer epigenetics comes of age. Nat Genet. 1999 Feb;21(2):163–167. doi: 10.1038/5947. [DOI] [PubMed] [Google Scholar]
  62. Jones P. A. The DNA methylation paradox. Trends Genet. 1999 Jan;15(1):34–37. doi: 10.1016/s0168-9525(98)01636-9. [DOI] [PubMed] [Google Scholar]
  63. Jones P. L., Veenstra G. J., Wade P. A., Vermaak D., Kass S. U., Landsberger N., Strouboulis J., Wolffe A. P. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet. 1998 Jun;19(2):187–191. doi: 10.1038/561. [DOI] [PubMed] [Google Scholar]
  64. Joyce J. A., Lam W. K., Catchpoole D. J., Jenks P., Reik W., Maher E. R., Schofield P. N. Imprinting of IGF2 and H19: lack of reciprocity in sporadic Beckwith-Wiedemann syndrome. Hum Mol Genet. 1997 Sep;6(9):1543–1548. doi: 10.1093/hmg/6.9.1543. [DOI] [PubMed] [Google Scholar]
  65. Kajii T., Ohama K. Androgenetic origin of hydatidiform mole. Nature. 1977 Aug 18;268(5621):633–634. doi: 10.1038/268633a0. [DOI] [PubMed] [Google Scholar]
  66. Kalscheuer V. M., Mariman E. C., Schepens M. T., Rehder H., Ropers H. H. The insulin-like growth factor type-2 receptor gene is imprinted in the mouse but not in humans. Nat Genet. 1993 Sep;5(1):74–78. doi: 10.1038/ng0993-74. [DOI] [PubMed] [Google Scholar]
  67. Kaneko-Ishino T., Kuroiwa Y., Miyoshi N., Kohda T., Suzuki R., Yokoyama M., Viville S., Barton S. C., Ishino F., Surani M. A. Peg1/Mest imprinted gene on chromosome 6 identified by cDNA subtraction hybridization. Nat Genet. 1995 Sep;11(1):52–59. doi: 10.1038/ng0995-52. [DOI] [PubMed] [Google Scholar]
  68. Kato T., Winokur G., Coryell W., Keller M. B., Endicott J., Rice J. Parent-of-origin effect in transmission of bipolar disorder. Am J Med Genet. 1996 Nov 22;67(6):546–550. doi: 10.1002/(SICI)1096-8628(19961122)67:6<546::AID-AJMG6>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  69. Kishino T., Lalande M., Wagstaff J. UBE3A/E6-AP mutations cause Angelman syndrome. Nat Genet. 1997 Jan;15(1):70–73. doi: 10.1038/ng0197-70. [DOI] [PubMed] [Google Scholar]
  70. Kitsberg D., Selig S., Brandeis M., Simon I., Keshet I., Driscoll D. J., Nicholls R. D., Cedar H. Allele-specific replication timing of imprinted gene regions. Nature. 1993 Jul 29;364(6436):459–463. doi: 10.1038/364459a0. [DOI] [PubMed] [Google Scholar]
  71. Klein C. B., Costa M. DNA methylation and gene expression: introduction and overview. Mutat Res. 1997 Apr;386(2):103–105. doi: 10.1016/s1383-5742(96)00046-4. [DOI] [PubMed] [Google Scholar]
  72. Knoll J. H., Cheng S. D., Lalande M. Allele specificity of DNA replication timing in the Angelman/Prader-Willi syndrome imprinted chromosomal region. Nat Genet. 1994 Jan;6(1):41–46. doi: 10.1038/ng0194-41. [DOI] [PubMed] [Google Scholar]
  73. Knudson A. G. Hereditary predisposition to cancer. Ann N Y Acad Sci. 1997 Dec 29;833:58–67. doi: 10.1111/j.1749-6632.1997.tb48593.x. [DOI] [PubMed] [Google Scholar]
  74. Komma D. J., Endow S. A. Haploidy and androgenesis in Drosophila. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11884–11888. doi: 10.1073/pnas.92.25.11884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Kornfeld S. Structure and function of the mannose 6-phosphate/insulinlike growth factor II receptors. Annu Rev Biochem. 1992;61:307–330. doi: 10.1146/annurev.bi.61.070192.001515. [DOI] [PubMed] [Google Scholar]
  76. Kuroiwa Y., Kaneko-Ishino T., Kagitani F., Kohda T., Li L. L., Tada M., Suzuki R., Yokoyama M., Shiroishi T., Wakana S. Peg3 imprinted gene on proximal chromosome 7 encodes for a zinc finger protein. Nat Genet. 1996 Feb;12(2):186–190. doi: 10.1038/ng0296-186. [DOI] [PubMed] [Google Scholar]
  77. Laird P. W., Jaenisch R. The role of DNA methylation in cancer genetic and epigenetics. Annu Rev Genet. 1996;30:441–464. doi: 10.1146/annurev.genet.30.1.441. [DOI] [PubMed] [Google Scholar]
  78. Lalande M. Parental imprinting and human disease. Annu Rev Genet. 1996;30:173–195. doi: 10.1146/annurev.genet.30.1.173. [DOI] [PubMed] [Google Scholar]
  79. Lee M. P., Hu R. J., Johnson L. A., Feinberg A. P. Human KVLQT1 gene shows tissue-specific imprinting and encompasses Beckwith-Wiedemann syndrome chromosomal rearrangements. Nat Genet. 1997 Feb;15(2):181–185. doi: 10.1038/ng0297-181. [DOI] [PubMed] [Google Scholar]
  80. Lefebvre L., Viville S., Barton S. C., Ishino F., Keverne E. B., Surani M. A. Abnormal maternal behaviour and growth retardation associated with loss of the imprinted gene Mest. Nat Genet. 1998 Oct;20(2):163–169. doi: 10.1038/2464. [DOI] [PubMed] [Google Scholar]
  81. Leighton P. A., Ingram R. S., Eggenschwiler J., Efstratiadis A., Tilghman S. M. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature. 1995 May 4;375(6526):34–39. doi: 10.1038/375034a0. [DOI] [PubMed] [Google Scholar]
  82. Leung S. Y., Chan T. L., Chung L. P., Chan A. S., Fan Y. W., Hung K. N., Kwong W. K., Ho J. W., Yuen S. T. Microsatellite instability and mutation of DNA mismatch repair genes in gliomas. Am J Pathol. 1998 Oct;153(4):1181–1188. doi: 10.1016/S0002-9440(10)65662-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Li E., Beard C., Jaenisch R. Role for DNA methylation in genomic imprinting. Nature. 1993 Nov 25;366(6453):362–365. doi: 10.1038/366362a0. [DOI] [PubMed] [Google Scholar]
  84. Li L., Keverne E. B., Aparicio S. A., Ishino F., Barton S. C., Surani M. A. Regulation of maternal behavior and offspring growth by paternally expressed Peg3. Science. 1999 Apr 9;284(5412):330–333. doi: 10.1126/science.284.5412.330. [DOI] [PubMed] [Google Scholar]
  85. Lloyd V. K., Sinclair D. A., Grigliatti T. A. Genomic imprinting and position-effect variegation in Drosophila melanogaster. Genetics. 1999 Apr;151(4):1503–1516. doi: 10.1093/genetics/151.4.1503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Mannens M., Alders M., Redeker B., Bliek J., Steenman M., Wiesmeyer C., de Meulemeester M., Ryan A., Kalikin L., Voûte T. Positional cloning of genes involved in the Beckwith-Wiedemann syndrome, hemihypertrophy, and associated childhood tumors. Med Pediatr Oncol. 1996 Nov;27(5):490–494. doi: 10.1002/(SICI)1096-911X(199611)27:5<490::AID-MPO17>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  87. Martin C. C., McGowan R. Genotype-specific modifiers of transgene methylation and expression in the zebrafish, Danio rerio. Genet Res. 1995 Feb;65(1):21–28. doi: 10.1017/s0016672300032973. [DOI] [PubMed] [Google Scholar]
  88. Mateo M., Mollejo M., Villuendas R., Algara P., Sanchez-Beato M., Martínez P., Piris M. A. 7q31-32 allelic loss is a frequent finding in splenic marginal zone lymphoma. Am J Pathol. 1999 May;154(5):1583–1589. doi: 10.1016/S0002-9440(10)65411-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Matsuura T., Sutcliffe J. S., Fang P., Galjaard R. J., Jiang Y. H., Benton C. S., Rommens J. M., Beaudet A. L. De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nat Genet. 1997 Jan;15(1):74–77. doi: 10.1038/ng0197-74. [DOI] [PubMed] [Google Scholar]
  90. McCauley E., Ito J., Kay T. Psychosocial functioning in girls with Turner's syndrome and short stature: social skills, behavior problems, and self-concept. J Am Acad Child Psychiatry. 1986 Jan;25(1):105–112. doi: 10.1016/s0002-7138(09)60606-3. [DOI] [PubMed] [Google Scholar]
  91. McCauley E., Kay T., Ito J., Treder R. The Turner syndrome: cognitive deficits, affective discrimination, and behavior problems. Child Dev. 1987 Apr;58(2):464–473. [PubMed] [Google Scholar]
  92. McGrath J., Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell. 1984 May;37(1):179–183. doi: 10.1016/0092-8674(84)90313-1. [DOI] [PubMed] [Google Scholar]
  93. McMahon F. J., Stine O. C., Meyers D. A., Simpson S. G., DePaulo J. R. Patterns of maternal transmission in bipolar affective disorder. Am J Hum Genet. 1995 Jun;56(6):1277–1286. [PMC free article] [PubMed] [Google Scholar]
  94. Meguro M., Mitsuya K., Sui H., Shigenami K., Kugoh H., Nakao M., Oshimura M. Evidence for uniparental, paternal expression of the human GABAA receptor subunit genes, using microcell-mediated chromosome transfer. Hum Mol Genet. 1997 Nov;6(12):2127–2133. doi: 10.1093/hmg/6.12.2127. [DOI] [PubMed] [Google Scholar]
  95. Miller A. P., Willard H. F. Chromosomal basis of X chromosome inactivation: identification of a multigene domain in Xp11.21-p11.22 that escapes X inactivation. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8709–8714. doi: 10.1073/pnas.95.15.8709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Mills J. J., Falls J. G., De Souza A. T., Jirtle R. L. Imprinted M6p/Igf2 receptor is mutated in rat liver tumors. Oncogene. 1998 May 28;16(21):2797–2802. doi: 10.1038/sj.onc.1201801. [DOI] [PubMed] [Google Scholar]
  97. Mitsuya K., Meguro M., Lee M. P., Katoh M., Schulz T. C., Kugoh H., Yoshida M. A., Niikawa N., Feinberg A. P., Oshimura M. LIT1, an imprinted antisense RNA in the human KvLQT1 locus identified by screening for differentially expressed transcripts using monochromosomal hybrids. Hum Mol Genet. 1999 Jul;8(7):1209–1217. doi: 10.1093/hmg/8.7.1209. [DOI] [PubMed] [Google Scholar]
  98. Miyoshi N., Kuroiwa Y., Kohda T., Shitara H., Yonekawa H., Kawabe T., Hasegawa H., Barton S. C., Surani M. A., Kaneko-Ishino T. Identification of the Meg1/Grb10 imprinted gene on mouse proximal chromosome 11, a candidate for the Silver-Russell syndrome gene. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):1102–1107. doi: 10.1073/pnas.95.3.1102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Moore T., Constancia M., Zubair M., Bailleul B., Feil R., Sasaki H., Reik W. Multiple imprinted sense and antisense transcripts, differential methylation and tandem repeats in a putative imprinting control region upstream of mouse Igf2. Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12509–12514. doi: 10.1073/pnas.94.23.12509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Moore T., Haig D. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet. 1991 Feb;7(2):45–49. doi: 10.1016/0168-9525(91)90230-N. [DOI] [PubMed] [Google Scholar]
  101. Morisaki H., Hatada I., Morisaki T., Mukai T. A novel gene, ITM, located between p57KIP2 and IPL, is imprinted in mice. DNA Res. 1998 Aug 31;5(4):235–240. doi: 10.1093/dnares/5.4.235. [DOI] [PubMed] [Google Scholar]
  102. Morison I. M., Reeve A. E. A catalogue of imprinted genes and parent-of-origin effects in humans and animals. Hum Mol Genet. 1998;7(10):1599–1609. doi: 10.1093/hmg/7.10.1599. [DOI] [PubMed] [Google Scholar]
  103. Nan X., Ng H. H., Johnson C. A., Laherty C. D., Turner B. M., Eisenman R. N., Bird A. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998 May 28;393(6683):386–389. doi: 10.1038/30764. [DOI] [PubMed] [Google Scholar]
  104. Nicholls R. D., Saitoh S., Horsthemke B. Imprinting in Prader-Willi and Angelman syndromes. Trends Genet. 1998 May;14(5):194–200. doi: 10.1016/s0168-9525(98)01432-2. [DOI] [PubMed] [Google Scholar]
  105. Nishiwaki K., Niikawa N., Ishikawa M. Polymorphic and tissue-specific imprinting of the human Wilms tumor gene, WT1. Jpn J Hum Genet. 1997 Mar;42(1):205–211. doi: 10.1007/BF02766923. [DOI] [PubMed] [Google Scholar]
  106. Nur U., Werren J. H., Eickbush D. G., Burke W. D., Eickbush T. H. A "selfish" B chromosome that enhances its transmission by eliminating the paternal genome. Science. 1988 Apr 22;240(4851):512–514. doi: 10.1126/science.3358129. [DOI] [PubMed] [Google Scholar]
  107. Nyce J. W. Drug-induced DNA hypermethylation: a potential mediator of acquired drug resistance during cancer chemotherapy. Mutat Res. 1997 Apr;386(2):153–161. doi: 10.1016/s1383-5742(96)00051-8. [DOI] [PubMed] [Google Scholar]
  108. Nyce J. Drug-induced DNA hypermethylation and drug resistance in human tumors. Cancer Res. 1989 Nov 1;49(21):5829–5836. [PubMed] [Google Scholar]
  109. Nyce J., Leonard S., Canupp D., Schulz S., Wong S. Epigenetic mechanisms of drug resistance: drug-induced DNA hypermethylation and drug resistance. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2960–2964. doi: 10.1073/pnas.90.7.2960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Ogawa O., Eccles M. R., Szeto J., McNoe L. A., Yun K., Maw M. A., Smith P. J., Reeve A. E. Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms' tumour. Nature. 1993 Apr 22;362(6422):749–751. doi: 10.1038/362749a0. [DOI] [PubMed] [Google Scholar]
  111. Ogawa O., McNoe L. A., Eccles M. R., Morison I. M., Reeve A. E. Human insulin-like growth factor type I and type II receptors are not imprinted. Hum Mol Genet. 1993 Dec;2(12):2163–2165. doi: 10.1093/hmg/2.12.2163. [DOI] [PubMed] [Google Scholar]
  112. Ohama K., Nomura K., Okamoto E., Fukuda Y., Ihara T., Fujiwara A. Origin of immature teratoma of the ovary. Am J Obstet Gynecol. 1985 Aug 1;152(7 Pt 1):896–900. doi: 10.1016/s0002-9378(85)80088-0. [DOI] [PubMed] [Google Scholar]
  113. Ohara K., Xu H. D., Mori N., Suzuki Y., Xu D. S., Ohara K., Wang Z. C. Anticipation and imprinting in schizophrenia. Biol Psychiatry. 1997 Nov 1;42(9):760–766. doi: 10.1016/s0006-3223(97)00022-x. [DOI] [PubMed] [Google Scholar]
  114. Ohta T., Buiting K., Kokkonen H., McCandless S., Heeger S., Leisti H., Driscoll D. J., Cassidy S. B., Horsthemke B., Nicholls R. D. Molecular mechanism of angelman syndrome in two large families involves an imprinting mutation. Am J Hum Genet. 1999 Feb;64(2):385–396. doi: 10.1086/302232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Ohta T., Gray T. A., Rogan P. K., Buiting K., Gabriel J. M., Saitoh S., Muralidhar B., Bilienska B., Krajewska-Walasek M., Driscoll D. J. Imprinting-mutation mechanisms in Prader-Willi syndrome. Am J Hum Genet. 1999 Feb;64(2):397–413. doi: 10.1086/302233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Okamoto K., Morison I. M., Taniguchi T., Reeve A. E. Epigenetic changes at the insulin-like growth factor II/H19 locus in developing kidney is an early event in Wilms tumorigenesis. Proc Natl Acad Sci U S A. 1997 May 13;94(10):5367–5371. doi: 10.1073/pnas.94.10.5367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Okano M., Xie S., Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet. 1998 Jul;19(3):219–220. doi: 10.1038/890. [DOI] [PubMed] [Google Scholar]
  118. Pham N. V., Nguyen M. T., Hu J. F., Vu T. H., Hoffman A. R. Dissociation of IGF2 and H19 imprinting in human brain. Brain Res. 1998 Nov 9;810(1-2):1–8. doi: 10.1016/s0006-8993(98)00783-5. [DOI] [PubMed] [Google Scholar]
  119. Piao Z., Choi Y., Park C., Lee W. J., Park J. H., Kim H. Deletion of the M6P/IGF2r gene in primary hepatocellular carcinoma. Cancer Lett. 1997 Nov 25;120(1):39–43. doi: 10.1016/s0304-3835(97)00289-9. [DOI] [PubMed] [Google Scholar]
  120. Plass C., Shibata H., Kalcheva I., Mullins L., Kotelevtseva N., Mullins J., Kato R., Sasaki H., Hirotsune S., Okazaki Y. Identification of Grf1 on mouse chromosome 9 as an imprinted gene by RLGS-M. Nat Genet. 1996 Sep;14(1):106–109. doi: 10.1038/ng0996-106. [DOI] [PubMed] [Google Scholar]
  121. Pulford D. J., Falls J. G., Killian J. K., Jirtle R. L. Polymorphisms, genomic imprinting and cancer susceptibility. Mutat Res. 1999 Jan;436(1):59–67. doi: 10.1016/s1383-5742(98)00018-0. [DOI] [PubMed] [Google Scholar]
  122. Rainier S., Johnson L. A., Dobry C. J., Ping A. J., Grundy P. E., Feinberg A. P. Relaxation of imprinted genes in human cancer. Nature. 1993 Apr 22;362(6422):747–749. doi: 10.1038/362747a0. [DOI] [PubMed] [Google Scholar]
  123. Razin A., Cedar H. DNA methylation and genomic imprinting. Cell. 1994 May 20;77(4):473–476. doi: 10.1016/0092-8674(94)90208-9. [DOI] [PubMed] [Google Scholar]
  124. Reik W., Brown K. W., Schneid H., Le Bouc Y., Bickmore W., Maher E. R. Imprinting mutations in the Beckwith-Wiedemann syndrome suggested by altered imprinting pattern in the IGF2-H19 domain. Hum Mol Genet. 1995 Dec;4(12):2379–2385. doi: 10.1093/hmg/4.12.2379. [DOI] [PubMed] [Google Scholar]
  125. Reis A., Dittrich B., Greger V., Buiting K., Lalande M., Gillessen-Kaesbach G., Anvret M., Horsthemke B. Imprinting mutations suggested by abnormal DNA methylation patterns in familial Angelman and Prader-Willi syndromes. Am J Hum Genet. 1994 May;54(5):741–747. [PMC free article] [PubMed] [Google Scholar]
  126. Robertson K. D., Uzvolgyi E., Liang G., Talmadge C., Sumegi J., Gonzales F. A., Jones P. A. The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res. 1999 Jun 1;27(11):2291–2298. doi: 10.1093/nar/27.11.2291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Robinson W. P., Lalande M. Sex-specific meiotic recombination in the Prader--Willi/Angelman syndrome imprinted region. Hum Mol Genet. 1995 May;4(5):801–806. doi: 10.1093/hmg/4.5.801. [DOI] [PubMed] [Google Scholar]
  128. Rogler C. E., Yang D., Rossetti L., Donohoe J., Alt E., Chang C. J., Rosenfeld R., Neely K., Hintz R. Altered body composition and increased frequency of diverse malignancies in insulin-like growth factor-II transgenic mice. J Biol Chem. 1994 May 13;269(19):13779–13784. [PubMed] [Google Scholar]
  129. Rougeulle C., Glatt H., Lalande M. The Angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted in brain. Nat Genet. 1997 Sep;17(1):14–15. doi: 10.1038/ng0997-14. [DOI] [PubMed] [Google Scholar]
  130. Saitoh S., Buiting K., Rogan P. K., Buxton J. L., Driscoll D. J., Arnemann J., König R., Malcolm S., Horsthemke B., Nicholls R. D. Minimal definition of the imprinting center and fixation of chromosome 15q11-q13 epigenotype by imprinting mutations. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7811–7815. doi: 10.1073/pnas.93.15.7811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Schmidt J. V., Levorse J. M., Tilghman S. M. Enhancer competition between H19 and Igf2 does not mediate their imprinting. Proc Natl Acad Sci U S A. 1999 Aug 17;96(17):9733–9738. doi: 10.1073/pnas.96.17.9733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Schofield P. N. Impact of genomic imprinting on genomic instability and radiation-induced mutation. Int J Radiat Biol. 1998 Dec;74(6):705–710. doi: 10.1080/095530098140970. [DOI] [PubMed] [Google Scholar]
  133. Siegfried Z., Eden S., Mendelsohn M., Feng X., Tsuberi B. Z., Cedar H. DNA methylation represses transcription in vivo. Nat Genet. 1999 Jun;22(2):203–206. doi: 10.1038/9727. [DOI] [PubMed] [Google Scholar]
  134. Skuse D. H., James R. S., Bishop D. V., Coppin B., Dalton P., Aamodt-Leeper G., Bacarese-Hamilton M., Creswell C., McGurk R., Jacobs P. A. Evidence from Turner's syndrome of an imprinted X-linked locus affecting cognitive function. Nature. 1997 Jun 12;387(6634):705–708. doi: 10.1038/42706. [DOI] [PubMed] [Google Scholar]
  135. Smilinich N. J., Day C. D., Fitzpatrick G. V., Caldwell G. M., Lossie A. C., Cooper P. R., Smallwood A. C., Joyce J. A., Schofield P. N., Reik W. A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wiedemann syndrome. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):8064–8069. doi: 10.1073/pnas.96.14.8064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Solter D. Differential imprinting and expression of maternal and paternal genomes. Annu Rev Genet. 1988;22:127–146. doi: 10.1146/annurev.ge.22.120188.001015. [DOI] [PubMed] [Google Scholar]
  137. Souza R. F., Appel R., Yin J., Wang S., Smolinski K. N., Abraham J. M., Zou T. T., Shi Y. Q., Lei J., Cottrell J. Microsatellite instability in the insulin-like growth factor II receptor gene in gastrointestinal tumours. Nat Genet. 1996 Nov;14(3):255–257. doi: 10.1038/ng1196-255. [DOI] [PubMed] [Google Scholar]
  138. Spotila L. D., Sereda L., Prockop D. J. Partial isodisomy for maternal chromosome 7 and short stature in an individual with a mutation at the COL1A2 locus. Am J Hum Genet. 1992 Dec;51(6):1396–1405. [PMC free article] [PubMed] [Google Scholar]
  139. Steenman M. J., Rainier S., Dobry C. J., Grundy P., Horon I. L., Feinberg A. P. Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms' tumour. Nat Genet. 1994 Jul;7(3):433–439. doi: 10.1038/ng0794-433. [DOI] [PubMed] [Google Scholar]
  140. Streisinger G., Walker C., Dower N., Knauber D., Singer F. Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature. 1981 May 28;291(5813):293–296. doi: 10.1038/291293a0. [DOI] [PubMed] [Google Scholar]
  141. Struhl K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 1998 Mar 1;12(5):599–606. doi: 10.1101/gad.12.5.599. [DOI] [PubMed] [Google Scholar]
  142. Stöger R., Kubicka P., Liu C. G., Kafri T., Razin A., Cedar H., Barlow D. P. Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell. 1993 Apr 9;73(1):61–71. doi: 10.1016/0092-8674(93)90160-r. [DOI] [PubMed] [Google Scholar]
  143. Sun F. L., Dean W. L., Kelsey G., Allen N. D., Reik W. Transactivation of Igf2 in a mouse model of Beckwith-Wiedemann syndrome. Nature. 1997 Oct 23;389(6653):809–815. doi: 10.1038/39797. [DOI] [PubMed] [Google Scholar]
  144. Surani M. A., Barton S. C., Norris M. L. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature. 1984 Apr 5;308(5959):548–550. doi: 10.1038/308548a0. [DOI] [PubMed] [Google Scholar]
  145. Sutcliffe J. S., Nakao M., Christian S., Orstavik K. H., Tommerup N., Ledbetter D. H., Beaudet A. L. Deletions of a differentially methylated CpG island at the SNRPN gene define a putative imprinting control region. Nat Genet. 1994 Sep;8(1):52–58. doi: 10.1038/ng0994-52. [DOI] [PubMed] [Google Scholar]
  146. Svensson K., Mattsson R., James T. C., Wentzel P., Pilartz M., MacLaughlin J., Miller S. J., Olsson T., Eriksson U. J., Ohlsson R. The paternal allele of the H19 gene is progressively silenced during early mouse development: the acetylation status of histones may be involved in the generation of variegated expression patterns. Development. 1998 Jan;125(1):61–69. doi: 10.1242/dev.125.1.61. [DOI] [PubMed] [Google Scholar]
  147. Swain J. L., Stewart T. A., Leder P. Parental legacy determines methylation and expression of an autosomal transgene: a molecular mechanism for parental imprinting. Cell. 1987 Aug 28;50(5):719–727. doi: 10.1016/0092-8674(87)90330-8. [DOI] [PubMed] [Google Scholar]
  148. Thomas J. H. Genomic imprinting proposed as a surveillance mechanism for chromosome loss. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):480–482. doi: 10.1073/pnas.92.2.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Varmuza S., Mann M. Genomic imprinting--defusing the ovarian time bomb. Trends Genet. 1994 Apr;10(4):118–123. doi: 10.1016/0168-9525(94)90212-7. [DOI] [PubMed] [Google Scholar]
  150. Vrana P. B., Guan X. J., Ingram R. S., Tilghman S. M. Genomic imprinting is disrupted in interspecific Peromyscus hybrids. Nat Genet. 1998 Dec;20(4):362–365. doi: 10.1038/3833. [DOI] [PubMed] [Google Scholar]
  151. Vu T. H., Hoffman A. R. Imprinting of the Angelman syndrome gene, UBE3A, is restricted to brain. Nat Genet. 1997 Sep;17(1):12–13. doi: 10.1038/ng0997-12. [DOI] [PubMed] [Google Scholar]
  152. Vu T. H., Hoffman A. R. Promoter-specific imprinting of the human insulin-like growth factor-II gene. Nature. 1994 Oct 20;371(6499):714–717. doi: 10.1038/371714a0. [DOI] [PubMed] [Google Scholar]
  153. Wakimoto B. T. Beyond the nucleosome: epigenetic aspects of position-effect variegation in Drosophila. Cell. 1998 May 1;93(3):321–324. doi: 10.1016/s0092-8674(00)81159-9. [DOI] [PubMed] [Google Scholar]
  154. Wang Q., Curran M. E., Splawski I., Burn T. C., Millholland J. M., VanRaay T. J., Shen J., Timothy K. W., Vincent G. M., de Jager T. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet. 1996 Jan;12(1):17–23. doi: 10.1038/ng0196-17. [DOI] [PubMed] [Google Scholar]
  155. Wang Z. Q., Fung M. R., Barlow D. P., Wagner E. F. Regulation of embryonic growth and lysosomal targeting by the imprinted Igf2/Mpr gene. Nature. 1994 Dec 1;372(6505):464–467. doi: 10.1038/372464a0. [DOI] [PubMed] [Google Scholar]
  156. Ward A. Beck-Wiedemann syndrome and Wilms' tumour. Mol Hum Reprod. 1997 Feb;3(2):157–168. doi: 10.1093/molehr/3.2.157. [DOI] [PubMed] [Google Scholar]
  157. Weksberg R., Shen D. R., Fei Y. L., Song Q. L., Squire J. Disruption of insulin-like growth factor 2 imprinting in Beckwith-Wiedemann syndrome. Nat Genet. 1993 Oct;5(2):143–150. doi: 10.1038/ng1093-143. [DOI] [PubMed] [Google Scholar]
  158. Wevrick R., Kerns J. A., Francke U. Identification of a novel paternally expressed gene in the Prader-Willi syndrome region. Hum Mol Genet. 1994 Oct;3(10):1877–1882. doi: 10.1093/hmg/3.10.1877. [DOI] [PubMed] [Google Scholar]
  159. Wutz A., Smrzka O. W., Schweifer N., Schellander K., Wagner E. F., Barlow D. P. Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature. 1997 Oct 16;389(6652):745–749. doi: 10.1038/39631. [DOI] [PubMed] [Google Scholar]
  160. Xu Y. Q., Grundy P., Polychronakos C. Aberrant imprinting of the insulin-like growth factor II receptor gene in Wilms' tumor. Oncogene. 1997 Mar 6;14(9):1041–1046. doi: 10.1038/sj.onc.1200926. [DOI] [PubMed] [Google Scholar]
  161. Xu Y., Goodyer C. G., Deal C., Polychronakos C. Functional polymorphism in the parental imprinting of the human IGF2R gene. Biochem Biophys Res Commun. 1993 Dec 15;197(2):747–754. doi: 10.1006/bbrc.1993.2542. [DOI] [PubMed] [Google Scholar]
  162. Yamada T., De Souza A. T., Finkelstein S., Jirtle R. L. Loss of the gene encoding mannose 6-phosphate/insulin-like growth factor II receptor is an early event in liver carcinogenesis. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10351–10355. doi: 10.1073/pnas.94.19.10351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Zhang Y., Tycko B. Monoallelic expression of the human H19 gene. Nat Genet. 1992 Apr;1(1):40–44. doi: 10.1038/ng0492-40. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES