Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2000 Mar;108(3):271–278. doi: 10.1289/ehp.00108271

Genomic imprinting and environmental disease susceptibility.

R L Jirtle 1, M Sander 1, J C Barrett 1
PMCID: PMC1637980  PMID: 10706535

Abstract

Genomic imprinting is one of the most intriguing subtleties of modern genetics. The term "imprinting" refers to parent-of-origin-dependent gene expression. The presence of imprinted genes can cause cells with a full parental complement of functional autosomal genes to specifically express one allele but not the other, resulting in monoallelic expression of the imprinted loci. Genomic imprinting plays a critical role in fetal growth and behavioral development, and it is regulated by DNA methylation and chromatin structure. This paper summarizes the Genomic Imprinting and Environmental Disease Susceptibility Conference held 8-10 October 1998 at Duke University, Durham, North Carolina. The conference focused on the importance of genomic imprinting in determining susceptibility to environmentally induced diseases. Conference topics included rationales for imprinting: parental antagonism and speciation; methods for imprinted gene identification: allelic message display and monochromosomal mouse/human hybrids; properties of the imprinted gene cluster human 11p15.5 and mouse distal 7; the epigenetics of X-chromosome inactivation; variability in imprinting: imprint erasure, non-Mendelian inheritance ratios, and polymorphic imprinting; imprinting and behavior: genetics of bipolar disorder, imprinting in Turner syndrome, and imprinting in brain development and social behavior; and aberrant methylation: methylation and chromatin structure, methylation and estrogen exposure, methylation of tumor-suppressor genes, and cancer susceptibility. Environmental factors are capable of causing epigenetic changes in DNA that can potentially alter imprint gene expression and that can result in genetic diseases including cancer and behavioral disorders. Understanding the contribution of imprinting to the regulation of gene expression will be an important step in evaluating environmental influences on human health and disease.

Full text

PDF
277

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baylin S. B., Herman J. G., Graff J. R., Vertino P. M., Issa J. P. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res. 1998;72:141–196. [PubMed] [Google Scholar]
  2. Brockdorff N. The role of Xist in X-inactivation. Curr Opin Genet Dev. 1998 Jun;8(3):328–333. doi: 10.1016/s0959-437x(98)80090-7. [DOI] [PubMed] [Google Scholar]
  3. Haig D. Parental antagonism, relatedness asymmetries, and genomic imprinting. Proc Biol Sci. 1997 Nov 22;264(1388):1657–1662. doi: 10.1098/rspb.1997.0230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Jirtle R. L. Genomic imprinting and cancer. Exp Cell Res. 1999 Apr 10;248(1):18–24. doi: 10.1006/excr.1999.4453. [DOI] [PubMed] [Google Scholar]
  5. Keverne E. B. Genomic imprinting in the brain. Curr Opin Neurobiol. 1997 Aug;7(4):463–468. doi: 10.1016/s0959-4388(97)80023-2. [DOI] [PubMed] [Google Scholar]
  6. Lee Y. W., Broday L., Costa M. Effects of nickel on DNA methyltransferase activity and genomic DNA methylation levels. Mutat Res. 1998 Jul 31;415(3):213–218. doi: 10.1016/s1383-5718(98)00078-3. [DOI] [PubMed] [Google Scholar]
  7. Li S., Washburn K. A., Moore R., Uno T., Teng C., Newbold R. R., McLachlan J. A., Negishi M. Developmental exposure to diethylstilbestrol elicits demethylation of estrogen-responsive lactoferrin gene in mouse uterus. Cancer Res. 1997 Oct 1;57(19):4356–4359. [PubMed] [Google Scholar]
  8. MacKinnon D. F., Jamison K. R., DePaulo J. R. Genetics of manic depressive illness. Annu Rev Neurosci. 1997;20:355–373. doi: 10.1146/annurev.neuro.20.1.355. [DOI] [PubMed] [Google Scholar]
  9. Mitsuya K., Meguro M., Sui H., Schulz T. C., Kugoh H., Hamada H., Oshimura M. Epigenetic reprogramming of the human H19 gene in mouse embryonic cells does not erase the primary parental imprint. Genes Cells. 1998 Apr;3(4):245–255. doi: 10.1046/j.1365-2443.1998.00183.x. [DOI] [PubMed] [Google Scholar]
  10. Naumova A. K., Leppert M., Barker D. F., Morgan K., Sapienza C. Parental origin-dependent, male offspring-specific transmission-ratio distortion at loci on the human X chromosome. Am J Hum Genet. 1998 Jun;62(6):1493–1499. doi: 10.1086/301860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Reik W., Walter J. Imprinting mechanisms in mammals. Curr Opin Genet Dev. 1998 Apr;8(2):154–164. doi: 10.1016/s0959-437x(98)80136-6. [DOI] [PubMed] [Google Scholar]
  12. Reilly S. M., Skuse D. H., Wolke D., Stevenson J. Oral-motor dysfunction in children who fail to thrive: organic or non-organic? Dev Med Child Neurol. 1999 Feb;41(2):115–122. doi: 10.1017/s0012162299000225. [DOI] [PubMed] [Google Scholar]
  13. Swafford D. S., Middleton S. K., Palmisano W. A., Nikula K. J., Tesfaigzi J., Baylin S. B., Herman J. G., Belinsky S. A. Frequent aberrant methylation of p16INK4a in primary rat lung tumors. Mol Cell Biol. 1997 Mar;17(3):1366–1374. doi: 10.1128/mcb.17.3.1366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tilghman S. M. The sins of the fathers and mothers: genomic imprinting in mammalian development. Cell. 1999 Jan 22;96(2):185–193. doi: 10.1016/s0092-8674(00)80559-0. [DOI] [PubMed] [Google Scholar]
  15. Tycko B., Trasler J., Bestor T. Genomic imprinting: gametic mechanisms and somatic consequences. J Androl. 1997 Sep-Oct;18(5):480–486. [PubMed] [Google Scholar]
  16. Vafiadis P., Bennett S. T., Colle E., Grabs R., Goodyer C. G., Polychronakos C. Imprinted and genotype-specific expression of genes at the IDDM2 locus in pancreas and leucocytes. J Autoimmun. 1996 Jun;9(3):397–403. doi: 10.1006/jaut.1996.0054. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES