Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Dec;41(12):2719–2723. doi: 10.1128/aac.41.12.2719

Cloning and characterization of a novel macrolide efflux gene, mreA, from Streptococcus agalactiae.

J Clancy 1, F Dib-Hajj 1, J W Petitpas 1, W Yuan 1
PMCID: PMC164195  PMID: 9420045

Abstract

A strain of Streptococcus agalactiae displayed resistance to 14-, 15-, and 16-membered macrolides. In PCR assays, total genomic DNA from this strain contained neither erm nor mef genes. EcoRI-digested genomic DNA from this strain was cloned into lambda Zap II to construct a library of S. agalactiae genomic DNA. A clone, pAES63, expressing resistance to erythromycin, azithromycin, and spiramycin in Escherichia coli was recovered. Deletion derivatives of pAES63 which defined a functional region on this clone that encoded resistance to 14- and 15-membered, but not 16-membered, macrolides were produced. Studies that determined the levels of incorporation of radiolabelled erythromycin into E. coli were consistent with the presence of a macrolide efflux determinant. This putative efflux determinant was distinct from the recently described Mef pump in Streptococcus pyogenes and Streptococcus pneumoniae and from the multicomponent MsrA pump in Staphylococcus aureus and coagulase-negative staphylococci. Its gene has been designated mreA (for macrolide resistance efflux).

Full Text

The Full Text of this article is available as a PDF (189.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams A., Oishi M. Genetic properties of arsenate sensitive mutants of Bacillus subtilis 168. Mol Gen Genet. 1972;118(4):295–310. doi: 10.1007/BF00333565. [DOI] [PubMed] [Google Scholar]
  2. Arthur M., Andremont A., Courvalin P. Distribution of erythromycin esterase and rRNA methylase genes in members of the family Enterobacteriaceae highly resistant to erythromycin. Antimicrob Agents Chemother. 1987 Mar;31(3):404–409. doi: 10.1128/aac.31.3.404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arthur M., Molinas C., Mabilat C., Courvalin P. Detection of erythromycin resistance by the polymerase chain reaction using primers in conserved regions of erm rRNA methylase genes. Antimicrob Agents Chemother. 1990 Oct;34(10):2024–2026. doi: 10.1128/aac.34.10.2024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barbero J. L., Buesa J. M., González de Buitrago G., Méndez E., Péz-Aranda A., García J. L. Complete nucleotide sequence of the penicillin acylase gene from Kluyvera citrophila. Gene. 1986;49(1):69–80. doi: 10.1016/0378-1119(86)90386-0. [DOI] [PubMed] [Google Scholar]
  5. Broekaert I., Lee H. I., Kush A., Chua N. H., Raikhel N. Wound-induced accumulation of mRNA containing a hevein sequence in laticifers of rubber tree (Hevea brasiliensis). Proc Natl Acad Sci U S A. 1990 Oct;87(19):7633–7637. doi: 10.1073/pnas.87.19.7633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chernik T. P., Bresler S. E., Machkovskii V. V., Perumov D. A. Issledovanie operona biosinteza riboflavina u Bacillus subtilis. Soobshchenie XVI. Lokalizatsiia markerov gruppy ribC na khromosome. Genetika. 1979 Sep;15(9):1569–1577. [PubMed] [Google Scholar]
  7. Clancy J., Petitpas J., Dib-Hajj F., Yuan W., Cronan M., Kamath A. V., Bergeron J., Retsema J. A. Molecular cloning and functional analysis of a novel macrolide-resistance determinant, mefA, from Streptococcus pyogenes. Mol Microbiol. 1996 Dec;22(5):867–879. doi: 10.1046/j.1365-2958.1996.01521.x. [DOI] [PubMed] [Google Scholar]
  8. Engelman D. M., Steitz T. A., Goldman A. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu Rev Biophys Biophys Chem. 1986;15:321–353. doi: 10.1146/annurev.bb.15.060186.001541. [DOI] [PubMed] [Google Scholar]
  9. Hagman K. E., Pan W., Spratt B. G., Balthazar J. T., Judd R. C., Shafer W. M. Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDE efflux system. Microbiology. 1995 Mar;141(Pt 3):611–622. doi: 10.1099/13500872-141-3-611. [DOI] [PubMed] [Google Scholar]
  10. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  11. Leclercq R., Courvalin P. Intrinsic and unusual resistance to macrolide, lincosamide, and streptogramin antibiotics in bacteria. Antimicrob Agents Chemother. 1991 Jul;35(7):1273–1276. doi: 10.1128/aac.35.7.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lewis K. Multidrug resistance pumps in bacteria: variations on a theme. Trends Biochem Sci. 1994 Mar;19(3):119–123. doi: 10.1016/0968-0004(94)90204-6. [DOI] [PubMed] [Google Scholar]
  13. Nikaido H. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science. 1994 Apr 15;264(5157):382–388. doi: 10.1126/science.8153625. [DOI] [PubMed] [Google Scholar]
  14. Pan W., Spratt B. G. Regulation of the permeability of the gonococcal cell envelope by the mtr system. Mol Microbiol. 1994 Feb;11(4):769–775. doi: 10.1111/j.1365-2958.1994.tb00354.x. [DOI] [PubMed] [Google Scholar]
  15. Ross J. I., Eady E. A., Cove J. H., Cunliffe W. J., Baumberg S., Wootton J. C. Inducible erythromycin resistance in staphylococci is encoded by a member of the ATP-binding transport super-gene family. Mol Microbiol. 1990 Jul;4(7):1207–1214. doi: 10.1111/j.1365-2958.1990.tb00696.x. [DOI] [PubMed] [Google Scholar]
  16. Vaara M., Vaara T. Sensitization of Gram-negative bacteria to antibiotics and complement by a nontoxic oligopeptide. Nature. 1983 Jun 9;303(5917):526–528. doi: 10.1038/303526a0. [DOI] [PubMed] [Google Scholar]
  17. Weisblum B. Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother. 1995 Mar;39(3):577–585. doi: 10.1128/AAC.39.3.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Yamagata H., Taguchi N., Daishima K., Mizushima S. Genetic characterization of a gene for prolipoprotein signal peptidase in Escherichia coli. Mol Gen Genet. 1983;192(1-2):10–14. doi: 10.1007/BF00327640. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES