Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1971 Dec;43(4):834–844. doi: 10.1111/j.1476-5381.1971.tb07220.x

Relationship between internal Na+/K+ and the accumulation of 14C-5-hydroxytryptamine by rat platelets

J M Sneddon
PMCID: PMC1665702  PMID: 5152030

Abstract

1. 5-Hydroxytryptamine (5-HT) transport has been investigated in rat blood platelets poisoned with dinitrophenol-sodium fluoride or ouabain.

2. The inhibition of transport produced by different concentrations of the metabolic inhibitors has been correlated with changes in the internal Na+ and K+ concentrations of the platelets.

3. Platelets poisoned in a high K+ medium maintained a high internal K+ concentration in the absence of cellular metabolism. When transferred to Krebs solutions containing different concentrations of Na+ they accumulated 5-HT by a process that was related to the magnitudes of the internal and external Na+ concentrations.

4. The results are consistent with the hypothesis that the spontaneous movement of ions through the platelet membrane is capable of providing, at least in part, the energy requirements for 5-HT transport.

Full text

PDF
836

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BORN G. V., GILLSON R. E. Studies on the uptake of 5-hydroxytryptamine by blood platelets. J Physiol. 1959 Jun 11;146(3):472–491. doi: 10.1113/jphysiol.1959.sp006206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bogdanski D. F., Tissari A. H., Brodie B. B. Mechanism of transport and storage of biogenic amines. 3. Effects of sodium and potassium on kinetics of 5-hydroxytryptamine and norepinephrine transport by rabbit synaptosomes. Biochim Biophys Acta. 1970;219(1):189–199. doi: 10.1016/0005-2736(70)90074-x. [DOI] [PubMed] [Google Scholar]
  3. CHRISTENSEN H. N., RIGGS T. R. Concentrative uptake of amino acids by the Ehrlich mouse ascites carcinoma cell. J Biol Chem. 1952 Jan;194(1):57–68. [PubMed] [Google Scholar]
  4. Colburn R. W., Goodwin F. K., Murphy D. L., Bunney W. E., Jr, Davis J. M. Quantitative studies of norepinephrine uptake by synaptosomes. Biochem Pharmacol. 1968 Jun;17(6):957–964. doi: 10.1016/0006-2952(68)90354-7. [DOI] [PubMed] [Google Scholar]
  5. Crane R. K. Na+ -dependent transport in the intestine and other animal tissues. Fed Proc. 1965 Sep-Oct;24(5):1000–1006. [PubMed] [Google Scholar]
  6. Detwiler T. C., Zivkovic R. V. Control of energy metabolism in platelets. A comparison of aerobic and anaerobic metabolism in washed rat platelets. Biochim Biophys Acta. 1970 Mar 3;197(2):117–126. doi: 10.1016/0005-2728(70)90022-8. [DOI] [PubMed] [Google Scholar]
  7. Eddy A. A. A net gain of sodium ions and a net loss of potassium ions accompanying the uptake of glycine by mouse ascites-tumour cells in the presence of sodium cyanide. Biochem J. 1968 Jun;108(2):195–206. doi: 10.1042/bj1080195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eddy A. A., Hogg M. C. Further observations on the inhibitory effect of extracellular potassium ions on glycine uptake by mouse ascites-tumour cells. Biochem J. 1969 Oct;114(4):807–814. doi: 10.1042/bj1140807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eddy A. A., Mulcahy M. F., Thomson P. J. The effects of sodium ions and potassium ions on glycine uptake by mouse ascites-tumour cells in the presence and absence of selected metabolic inhibitors. Biochem J. 1967 Jun;103(3):863–876. doi: 10.1042/bj1030863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eddy A. A. The effects of varying the cellular and extracellular concentrations of sodium and potassium ions on the uptake of glycine by mouse ascites-tumour cells in the presence and absence of sodium cyanide. Biochem J. 1968 Jul;108(3):489–498. doi: 10.1042/bj1080489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HUMPHREY J. H., TOH C. C. Absorption of serotonin (5-hydroxytryptamine) and histamine by dog platelets. J Physiol. 1954 May 28;124(2):300–304. doi: 10.1113/jphysiol.1954.sp005108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kipnis D. M., Parrish J. E. Role of Na+ and K+ on sugar (2-deoxyglucose) and amino acid (alpha-aminoisobutyric acid) transport in striated muscle. Fed Proc. 1965 Sep-Oct;24(5):1051–1059. [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Lingjaerde O. Uptake of serotonin in blood platelets: Dependence on sodium and chloride, and inhibition by choline. FEBS Lett. 1969 Apr;3(2):103–106. doi: 10.1016/0014-5793(69)80108-0. [DOI] [PubMed] [Google Scholar]
  15. Mason R. G., Saba S. R. Platelet ATPase activities. I. Ecto-ATPases of intact platelets and their possible role in aggregation. Am J Pathol. 1969 May;55(2):215–223. [PMC free article] [PubMed] [Google Scholar]
  16. RIGGS T. R., WALKER L. M., CHRISTENSEN H. N. Potassium migration and amino acid transport. J Biol Chem. 1958 Dec;233(6):1479–1484. [PubMed] [Google Scholar]
  17. SANO I., KAKIMOTO Y., TANIGUCHI K. Binding and transport of serotonin in rabbit blood platelets and action of reserpine. Am J Physiol. 1958 Nov;195(2):495–498. doi: 10.1152/ajplegacy.1958.195.2.495. [DOI] [PubMed] [Google Scholar]
  18. Schultz S. G., Curran P. F. Coupled transport of sodium and organic solutes. Physiol Rev. 1970 Oct;50(4):637–718. doi: 10.1152/physrev.1970.50.4.637. [DOI] [PubMed] [Google Scholar]
  19. Smith M. W., Ellory J. C. Sodium-amino acid interactions in the intestinal epithelium. Philos Trans R Soc Lond B Biol Sci. 1971 Aug 20;262(842):131–140. doi: 10.1098/rstb.1971.0084. [DOI] [PubMed] [Google Scholar]
  20. Sneddon J. M. Sodium-dependent accumulation of 5-hydroxytryptamine by rat blood platelets. Br J Pharmacol. 1969 Nov;37(3):680–688. doi: 10.1111/j.1476-5381.1969.tb08506.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tissari A. H., Schönhöfer P. S., Bogdanski D. F., Brodie B. B. Mechanism of biogenic amine transport. II. Relationship between sodium and the mechanism of ouabain blockade of the accumulation of serotonin and norepinephrine by synaptosomes. Mol Pharmacol. 1969 Nov;5(6):593–604. [PubMed] [Google Scholar]
  22. VIDAVER G. A. SOME TESTS OF THE HYPOTHESIS THAT THE SODIUM-ION GRADIENT FURNISHES THE ENERGY FOR GLYCINE-ACTIVE TRANSPORT BY PIGEON RED CELLS. Biochemistry. 1964 Jun;3:803–808. doi: 10.1021/bi00894a013. [DOI] [PubMed] [Google Scholar]
  23. WEISSBACH H., REDFIELD B. G. Factors affecting the uptake of 5-hydroxytryptamine by human platelets in an inorganic medium. J Biol Chem. 1960 Nov;235:3287–3291. [PubMed] [Google Scholar]
  24. White T. D., Keen P. Effects of inhibitors of (Na plus, plus, K plus)-dependent adenosine triphosphatase on the uptake of norepinephrne by synaptosomes. Mol Pharmacol. 1971 Jan;7(1):40–45. [PubMed] [Google Scholar]
  25. White T. D., Keen P. The role of internal and external Na+ and K+ on the uptake of [3H] noradrenaline by synaptosomes prepared from rat brain. Biochim Biophys Acta. 1970;196(2):285–295. doi: 10.1016/0005-2736(70)90016-7. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES