Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1975 May;54(1):61–64. doi: 10.1111/j.1476-5381.1975.tb07410.x

Effects of acute cocaine treatment on the turnover of 5-hydroxytryptamine in the rat brain.

E Friedman, S Gershon, J Rotrosen
PMCID: PMC1666400  PMID: 1139076

Abstract

1. The effects of cocaine (20 mg/kg s.c.) on 5-hydroxytryptamine (5-HT) turnover were examined in rats. 2. In vivo cocaine administration resulted in decreased turnover of 5-HT, as indicated by the decreased accumulation of 5-HT after pargyline administration and the decreased accumulation of 5-hydroxyindoleacetic acid (5-HIAA) following probenecid injection. 3. A time-related decrease in 5-HIAA concentrations and a small fall in 5-HT concentrations in the whole brain were observed following the acute administration of cocaine hydrochloride (20 mg/kg). Tryptophan levels were found to be slightly decreased in the brain. 4. Enhanced reactivity, but neither stereotypy nor hyperthermia, was observed following cocaine injection (20 mg/kg). 5. It is concluded that cocaine inhibits the turnover of brain 5-HT and that this action of cocaine may be responsible for the differences in a number of pharmacological effects between cocaine and amphetamine.

Full text

PDF
64

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aghajanian G. K., Foote W. E., Sheard M. H. Action of psychotogenic drugs on single midbrain raphe neurons. J Pharmacol Exp Ther. 1970 Feb;171(2):178–187. [PubMed] [Google Scholar]
  2. Andén N. E., Corrodi H., Fuxe K. Hallucinogenic drugs of the indolealkylamine type and central monoamine neurons. J Pharmacol Exp Ther. 1971 Nov;179(2):236–249. [PubMed] [Google Scholar]
  3. Andén N. E., Corrodi H., Fuxe K., Hökfelt T. Evidence for a central 5-hydroxytryptamine receptor stimulation by lysergic acid diethylamide. Br J Pharmacol. 1968 Sep;34(1):1–7. doi: 10.1111/j.1476-5381.1968.tb07943.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bejerot N. A comparison of the effects of cocaine and synthetic central stimulants. Br J Addict Alcohol Other Drugs. 1970 May;65(1):35–37. doi: 10.1111/j.1360-0443.1970.tb01130.x. [DOI] [PubMed] [Google Scholar]
  5. Carmichael F. J., Israel Y. In vitro inhibitory effects of narcotic analgesics and other psychotropic drugs on the active uptake of norepinephrine in mouse brain tissue. J Pharmacol Exp Ther. 1973 Aug;186(2):253–260. [PubMed] [Google Scholar]
  6. Curzon G., Green A. R. Rapid method for the determination of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in small regions of rat brain. Br J Pharmacol. 1970 Jul;39(3):653–655. doi: 10.1111/j.1476-5381.1970.tb10373.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Denckla W. D., Dewey H. K. The determination of tryptophan in plasma, liver, and urine. J Lab Clin Med. 1967 Jan;69(1):160–169. [PubMed] [Google Scholar]
  8. Farnebo L. O., Hamberger B. Drug-induced changes in the release of 3 H-monoamines from field stimulated rat brain slices. Acta Physiol Scand Suppl. 1971;371:35–44. doi: 10.1111/j.1748-1716.1971.tb05213.x. [DOI] [PubMed] [Google Scholar]
  9. Knapp S., Mandell A. J. Narcotic drugs: effects on the serotonin biosynthetic systems of the brain. Science. 1972 Sep 29;177(4055):1209–1211. doi: 10.1126/science.177.4055.1209. [DOI] [PubMed] [Google Scholar]
  10. Ross S. B., Renyi A. L. Inhibition of the uptake of tritiated 5-hydroxytryptamine in brain tissue. Eur J Pharmacol. 1969 Sep;7(3):270–277. doi: 10.1016/0014-2999(69)90091-0. [DOI] [PubMed] [Google Scholar]
  11. Ross S. B., Renyi A. L. Inhibition of the uptake of tritiated catecholamines by antidepressant and related agents. Eur J Pharmacol. 1967 Dec;2(3):181–186. doi: 10.1016/0014-2999(67)90084-2. [DOI] [PubMed] [Google Scholar]
  12. Scheel-Krüger J. Behavioural and biochemical comparison of amphetamine derivatives, cocaine, benztropine and tricyclic anti-depressant drugs. Eur J Pharmacol. 1972 Apr;18(1):63–73. doi: 10.1016/0014-2999(72)90132-x. [DOI] [PubMed] [Google Scholar]
  13. Snyder S. H., Coyle J. T. Regional differences in H3-norepinephrine and H3-dopamine uptake into rat brain homogenates. J Pharmacol Exp Ther. 1969 Jan;165(1):78–86. [PubMed] [Google Scholar]
  14. Snyder S. H., Unger S., Blatchley R., Barfknecht C. F. Stereospecific actions of DOET (2,5-dimethoxy-4-ethylamphetamine) in man. Arch Gen Psychiatry. 1974 Jul;31(1):103–106. doi: 10.1001/archpsyc.1974.01760130079013. [DOI] [PubMed] [Google Scholar]
  15. Starke K., Montel H. Alpha-receptor-mediated modulation of transmitter release from central noradrenergic neurones. Naunyn Schmiedebergs Arch Pharmacol. 1973;279(1):53–60. doi: 10.1007/BF00502067. [DOI] [PubMed] [Google Scholar]
  16. Wallach M. B., Friedman E., Gershon S. Behavioral and neurochemical effects of psychotomimetic drugs in neonate chicks. Eur J Pharmacol. 1972 Feb;17(2):259–269. doi: 10.1016/0014-2999(72)90167-7. [DOI] [PubMed] [Google Scholar]
  17. Wallach M. B., Gershon S. A neuropsychopharmacological comparison of d-amphetamine, L-dopa and cocaine. Neuropharmacology. 1971 Nov;10(6):743–752. doi: 10.1016/0028-3908(71)90089-x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES