Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1976 Jul;57(3):347–358. doi: 10.1111/j.1476-5381.1976.tb07673.x

A comparative study of the action of gamma-aminobutyric acid and piperazine on the lobster muscle fibre and the frog spinal cord.

A Constanti, A Nistri
PMCID: PMC1667242  PMID: 1086111

Abstract

1 The effects of gamma-aminobutyric acid (GABA) and piperazine were compared on two in vitro preparations, the lobster muscle fibre and the frog spinal cord. 2 Both GABA and piperazine increased the membrane conductance of single lobster muscle fibres without changing the membrane potential; sigmoidal log dose-conductance curves for these agents were obtained and a similar model expressed the receptor interaction of both substances. 3 The actions of GABA and piperazine on lobster muscle were antagonized by picrotoxin and were Cl-dependent. 4 In the frog spinal cord GABA depolarized the dorsal roots presumably by mimicking the activity of the transmitter depolarizing the primary afferents; sigmoidal log dose-response curves for GABA were obtained. 5 On the dorsal roots piperazine produced either depolarizations or biphasic responses; these were mainly indirect effects as was shown by experiments in the presence of tetrodotoxin (TTX). 6 The effects of GABA on the dorsal root (in TTX-treated cords) were antagonized by picrotoxin whereas those of piperazine were more resistant to this alkaloid. The GABA-induced responses appeared to be largely Na+-dependent while both Na+ and Cl- seemed to mediate the effects of piperazine. 7 It is proposed that piperazine has GABA-agonist activity on lobster muscle but little GABA-like activity on the frog spinal cord.

Full text

PDF
351

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARIUENS E. J., SIMONIS A. M. A MOLECULAR BASIS FOR DRUG ACTION. J Pharm Pharmacol. 1964 Mar;16:137–157. doi: 10.1111/j.2042-7158.1964.tb07437.x. [DOI] [PubMed] [Google Scholar]
  2. BOISTEL J., FATT P. Membrane permeability change during inhibitory transmitter action in crustacean muscle. J Physiol. 1958 Nov 10;144(1):176–191. doi: 10.1113/jphysiol.1958.sp006094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barker J. L., Nicoll R. A. The pharmacology and ionic dependency of amino acid responses in the frog spinal cord. J Physiol. 1973 Jan;228(2):259–277. doi: 10.1113/jphysiol.1973.sp010085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bowery N. G., Brown D. A. Depolarizing actions of gamma-aminobutyric acid and related compounds on rat superior cervical ganglia in vitro. Br J Pharmacol. 1974 Feb;50(2):205–218. doi: 10.1111/j.1476-5381.1974.tb08563.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Constanti A., Quilliam J. P. A comparison of the effects of GABA and imidazoleacetic acid on the membrane conductance of lobster muscle fibres. Brain Res. 1974 Oct 18;79(2):306–310. doi: 10.1016/0006-8993(74)90422-3. [DOI] [PubMed] [Google Scholar]
  6. Curtis D. R., Duggan A. W., Felix D., Johnston G. A., McLennan H. Antagonism between bicuculline and GABA in the cat brain. Brain Res. 1971 Oct 8;33(1):57–73. doi: 10.1016/0006-8993(71)90305-2. [DOI] [PubMed] [Google Scholar]
  7. Curtis D. R., Johnston G. A. Amino acid transmitters in the mammalian central nervous system. Ergeb Physiol. 1974;69(0):97–188. doi: 10.1007/3-540-06498-2_3. [DOI] [PubMed] [Google Scholar]
  8. DELCASTILLO J., DEMELLO W. C., MORALES T. MECHANISM OF THE PARALYSING ACTION OF PIPERAZINE ON ASCARIS MUSCLE. Br J Pharmacol Chemother. 1964 Jun;22:463–477. doi: 10.1111/j.1476-5381.1964.tb01701.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Earl J., Large W. A. Electrophysiological investigation of GABA-mediated inhibition at the hermit crab neuromuscular junction. J Physiol. 1974 Jan;236(1):113–127. doi: 10.1113/jphysiol.1974.sp010425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Feltz A. Competitive interaction of beta-guanidino propionic acid and gamma-aminobutyric acid on the muscle fibre of the crayfish. J Physiol. 1971 Jul;216(2):391–401. doi: 10.1113/jphysiol.1971.sp009531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gerschenfeld H. M. Chemical transmission in invertebrate central nervous systems and neuromuscular junctions. Physiol Rev. 1973 Jan;53(1):1–119. doi: 10.1152/physrev.1973.53.1.1. [DOI] [PubMed] [Google Scholar]
  12. Iravani J. Wechselbeziehung von Barbituraten und Piperazin mit GABA an der Membran des Krebsmuskels. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1965 Jul 26;251(3):265–274. [PubMed] [Google Scholar]
  13. Nishi S., Minota S., Karczmar A. G. Primary afferent neurones: the ionic mechanism of GABA-mediated depolarization. Neuropharmacology. 1974 Mar;13(3):215–219. doi: 10.1016/0028-3908(74)90110-5. [DOI] [PubMed] [Google Scholar]
  14. Nistri A., Constanti A., Quilliam J. P. Letter: Central inhibition, G.A.B.A., and tutin. Lancet. 1974 May 18;1(7864):996–997. doi: 10.1016/s0140-6736(74)91311-7. [DOI] [PubMed] [Google Scholar]
  15. Nistri A., Constanti A. Some observations on the mechanism of action of baclofen (beta-chlorophenyl-gamma-amino-butyric acid). Experientia. 1975 Jan 15;31(1):64–65. doi: 10.1007/BF01924681. [DOI] [PubMed] [Google Scholar]
  16. Parsons A. C. Piperazine neurotoxicity: "worm wobble". Br Med J. 1971 Dec 25;4(5790):792–792. doi: 10.1136/bmj.4.5790.792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. STEPHENSON R. P. A modification of receptor theory. Br J Pharmacol Chemother. 1956 Dec;11(4):379–393. doi: 10.1111/j.1476-5381.1956.tb00006.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shank R. P., Pong S. F., Freeman A. R., Graham L. T., Jr Bicuculline and picrotoxin as antagonists of gamma-aminobutyrate and neuromuscular inhibition in the lobster. Brain Res. 1974 May 31;72(1):71–78. doi: 10.1016/0006-8993(74)90651-9. [DOI] [PubMed] [Google Scholar]
  19. Shinozaki H., Konishi S. Actions of several anthelmintics and insecticides on rat cortical neurones. Brain Res. 1970 Dec 1;24(2):368–371. doi: 10.1016/0006-8993(70)90122-8. [DOI] [PubMed] [Google Scholar]
  20. Straughan D. W. Convulsant drugs: amino acid antagonism and central inhibition. Neuropharmacology. 1974 Jun;13(6):495–508. doi: 10.1016/0028-3908(74)90139-7. [DOI] [PubMed] [Google Scholar]
  21. Takeuchi A., Takeuchi N. A study of the action of picrotoxin on the inhibitory neuromuscular junction of the crayfish. J Physiol. 1969 Nov;205(2):377–391. doi: 10.1113/jphysiol.1969.sp008972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Takeuchi A., Takeuchi N. Anion permeability of the inhibitory post-synaptic membrane of the crayfish neuromuscular junction. J Physiol. 1967 Aug;191(3):575–590. doi: 10.1113/jphysiol.1967.sp008269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vaughan P. C. Muscle membrane. Prog Neurobiol. 1975;3:219–250. [PubMed] [Google Scholar]
  24. WEIDMANN S. The electrical constants of Purkinje fibres. J Physiol. 1952 Nov;118(3):348–360. doi: 10.1113/jphysiol.1952.sp004799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Werman R. An electrophysiological approach to drug-receptor mechanisms. Comp Biochem Physiol. 1969 Sep 15;30(6):997–1017. doi: 10.1016/0010-406x(69)91038-x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES