Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Apr;62(4):1336–1341. doi: 10.1128/aem.62.4.1336-1341.1996

Effects of sunlight on bacteriophage viability and structure.

K E Wommack 1, R T Hill 1, T A Muller 1, R R Colwell 1
PMCID: PMC167899  PMID: 8919794

Abstract

Current estimates of viral abundance in natural waters rely on direct counts of virus-like particles (VLPs), using either transmission or epifluorescence microscopy. Direct counts of VLPs, while useful in studies of viral ecology, do not indicate whether the observed VLPs are capable of infection and/or replication. Rapid decay in bacteriophage viability under environmental conditions has been observed. However, it has not been firmly established whether there is a corresponding degradation of the virus particles. To address this question, viable and direct counts were carried out employing two Chesapeake Bay bacteriophages in experimental microcosms incubated for 56 h at two depths in the York River estuary. Viruses incubated in situ in microcosms at the surface yielded decay rates in full sunlight of 0.11 and 0.06 h-1 for CB 38 phi and CB 7 phi, respectively. The number of infective particles in microcosms in the dark and at a depth of 1 m was not significantly different from laboratory controls, with decay rates averaging 0.052 h-1 for CB 38 phi and 0.037 h-1 for CB 7 phi. Direct counts of bacteriophages decreased in teh estuarine microcosms, albeit only at a rate of 0.028 h-1, and were independent of treatment. Destruction of virus particles is concluded to be a process separate from loss of infectivity. It is also concluded that strong sunlight affects the viability of bacteriophages in surface waters, with the result that direct counts of VLPs overestimate the number of bacteriophage capable of both infection and replication. However, in deeper waters, where solar radiation is not a significant factor, direct counts should more accurately estimate numbers of viable bacteriophage.

Full Text

The Full Text of this article is available as a PDF (237.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bergh O., Børsheim K. Y., Bratbak G., Heldal M. High abundance of viruses found in aquatic environments. Nature. 1989 Aug 10;340(6233):467–468. doi: 10.1038/340467a0. [DOI] [PubMed] [Google Scholar]
  2. Bratbak G., Heldal M., Norland S., Thingstad T. F. Viruses as partners in spring bloom microbial trophodynamics. Appl Environ Microbiol. 1990 May;56(5):1400–1405. doi: 10.1128/aem.56.5.1400-1405.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CARLUCCI A. F., PRAMER D. An evaluation of factors affecting the survival of Escherichia coli in sea water. IV. Bacteriophages. Appl Microbiol. 1960 Jul;8:254–256. doi: 10.1128/am.8.4.254-256.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gerba C. P., Schaiberger G. E. Effect of particulates on virus survival in seawater. J Water Pollut Control Fed. 1975 Jan;47(1):93–103. [PubMed] [Google Scholar]
  5. Hara S., Terauchi K., Koike I. Abundance of viruses in marine waters: assessment by epifluorescence and transmission electron microscopy. Appl Environ Microbiol. 1991 Sep;57(9):2731–2734. doi: 10.1128/aem.57.9.2731-2734.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Janda J. M. Recent advances in the study of the taxonomy, pathogenicity, and infectious syndromes associated with the genus Aeromonas. Clin Microbiol Rev. 1991 Oct;4(4):397–410. doi: 10.1128/cmr.4.4.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Klieve A. V., Swain R. A. Estimation of ruminal bacteriophage numbers by pulsed-field gel electrophoresis and laser densitometry. Appl Environ Microbiol. 1993 Jul;59(7):2299–2303. doi: 10.1128/aem.59.7.2299-2303.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lo S., Gilbert J., Hetrick F. Stability of human enteroviruses in estuarine and marine waters. Appl Environ Microbiol. 1976 Aug;32(2):245–249. doi: 10.1128/aem.32.2.245-249.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lycke E., Magnusson S., Lund E. Studies on the nature of the virus inactivating capacity of sea water. Arch Gesamte Virusforsch. 1965;17(3):409–413. doi: 10.1007/BF01241195. [DOI] [PubMed] [Google Scholar]
  10. Matossian A. M., Garabedian G. A. Virucidal action of sea water. Am J Epidemiol. 1967 Jan;85(1):1–8. doi: 10.1093/oxfordjournals.aje.a120666. [DOI] [PubMed] [Google Scholar]
  11. O'Brien R. T., Newman J. S. Inactivation of polioviruses and coxsackieviruses in surface water. Appl Environ Microbiol. 1977 Feb;33(2):334–340. doi: 10.1128/aem.33.2.334-340.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Patrick J. R., Brabham D. E., Achey P. M. Photoreactivity of UV-b damage in bacteriophage phi X174 DNA. Photochem Photobiol. 1981 May;33(5):769–771. doi: 10.1111/j.1751-1097.1981.tb05489.x. [DOI] [PubMed] [Google Scholar]
  13. Paul J. H., Rose J. B., Jiang S. C., Kellogg C. A., Dickson L. Distribution of viral abundance in the reef environment of Key Largo, Florida. Appl Environ Microbiol. 1993 Mar;59(3):718–724. doi: 10.1128/aem.59.3.718-724.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Smith E. M., Gerba C. P., Melnick J. L. Role of sediment in the persistence of enteroviruses in the estuarine environment. Appl Environ Microbiol. 1978 Apr;35(4):685–689. doi: 10.1128/aem.35.4.685-689.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Suttle C. A., Chan A. M. Dynamics and Distribution of Cyanophages and Their Effect on Marine Synechococcus spp. Appl Environ Microbiol. 1994 Sep;60(9):3167–3174. doi: 10.1128/aem.60.9.3167-3174.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Suttle C. A., Chen F. Mechanisms and rates of decay of marine viruses in seawater. Appl Environ Microbiol. 1992 Nov;58(11):3721–3729. doi: 10.1128/aem.58.11.3721-3729.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Toranzo A. E., Barja J. L., Hetrick F. M. Mechanism of poliovirus inactivation by cell-free filtrates of marine bacteria. Can J Microbiol. 1983 Nov;29(11):1481–1486. doi: 10.1139/m83-228. [DOI] [PubMed] [Google Scholar]
  18. Torrella F., Morita R. Y. Evidence by electron micrographs for a high incidence of bacteriophage particles in the waters of Yaquina Bay, oregon: ecological and taxonomical implications. Appl Environ Microbiol. 1979 Apr;37(4):774–778. doi: 10.1128/aem.37.4.774-778.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Valentine A. F., Chapman G. B. Fine structure and host-virus relationship of a marine bacterium and its bacteriophage. J Bacteriol. 1966 Nov;92(5):1535–1554. doi: 10.1128/jb.92.5.1535-1554.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Valentine A. F., Chen P. K., Colwell R. R., Chapman G. B. Structure of a marine bacteriophage as revealed by the negative-staining technique. J Bacteriol. 1966 Feb;91(2):819–822. doi: 10.1128/jb.91.2.819-822.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ward R. L., Ashley C. S. Inactivation of poliovirus in digested sludge. Appl Environ Microbiol. 1976 Jun;31(6):921–930. doi: 10.1128/aem.31.6.921-930.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Weinbauer M. G., Fuks D., Peduzzi P. Distribution of Viruses and Dissolved DNA along a Coastal Trophic Gradient in the Northern Adriatic Sea. Appl Environ Microbiol. 1993 Dec;59(12):4074–4082. doi: 10.1128/aem.59.12.4074-4082.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wommack K. E., Hill R. T., Kessel M., Russek-Cohen E., Colwell R. R. Distribution of viruses in the Chesapeake Bay. Appl Environ Microbiol. 1992 Sep;58(9):2965–2970. doi: 10.1128/aem.58.9.2965-2970.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zachary A. Physiology and ecology of bacteriophages of the marine bacterium Beneckea natriegens: salinity. Appl Environ Microbiol. 1976 Mar;31(3):415–422. doi: 10.1128/aem.31.3.415-422.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES