Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Jun;62(6):2066–2073. doi: 10.1128/aem.62.6.2066-2073.1996

Analysis of the critical sites for protein thermostabilization by proline substitution in oligo-1,6-glucosidase from Bacillus coagulans ATCC 7050 and the evolutionary consideration of proline residues.

K Watanabe 1, K Kitamura 1, Y Suzuki 1
PMCID: PMC167984  PMID: 8787404

Abstract

To identify the critical sites for protein thermostabilization by proline substitution, the gene for oligo-1,6- glucosidase from a thermophilic Bacillus coagulans strain, ATCC 7050, was cloned as a 2.4-kb DNA fragment and sequenced. In spite of a big difference in their thermostabilities, B. coagulans oligo-1,6-glucosidase had a large number of points in its primary structure identical to respective points in the same enzymes from a mesophilic Bacillus cereus strain, ATCC 7064 (57%), and an obligately thermophilic Bacillus thermoglucosidasius strain, KP1006 (59%). The number of prolines (19 for B. cereus oligo-1,6-glucosidase, 24 for B. coagulans enzyme, and 32 for B. thermoglucosidasius enzyme) was observed to increase with the rise in thermostabilities of the oligo-1,6-glucosidases. Classification of proline residues in light of the amino acid sequence alignment and the protein structure revealed by X-ray crystallographic analysis also supported this tendency. Judging from proline residues occurring in B. coagulans oligo-1,6-glucosidase and the structural requirement for proline substitution (second site of the beta turn and first turn of the alpha helix) (K. Watanabe, T. Masuda, H. Ohashi, H. Mihara, and Y. Suzuki, Eur. J. Biochem. 226:277-283, 1994), the critical sites for thermostabilization were found to be Lys-121, Glu-290, Lys-457, and Glu-487 in B. cereus oligo-1,6-glucosidase. With regard to protein evolution, the oligo-1,6-glucosidases very likely follow the neutral theory. The adaptive mutations of the oligo-1,6-glucosidases that appear to increase thermostability are consistent with the substitution of proline residues for neutrally occurring residues. It is concluded that proline substitution is an important factor for the selection of thermostability in oligo-1,6-glucosidases.

Full Text

The Full Text of this article is available as a PDF (419.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banner D. W., Bloomer A. C., Petsko G. A., Phillips D. C., Pogson C. I., Wilson I. A., Corran P. H., Furth A. J., Milman J. D., Offord R. E. Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5 angstrom resolution using amino acid sequence data. Nature. 1975 Jun 19;255(5510):609–614. doi: 10.1038/255609a0. [DOI] [PubMed] [Google Scholar]
  2. Chou P. Y., Fasman G. D. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1978;47:45–148. doi: 10.1002/9780470122921.ch2. [DOI] [PubMed] [Google Scholar]
  3. Herning T., Yutani K., Inaka K., Kuroki R., Matsushima M., Kikuchi M. Role of proline residues in human lysozyme stability: a scanning calorimetric study combined with X-ray structure analysis of proline mutants. Biochemistry. 1992 Aug 11;31(31):7077–7085. doi: 10.1021/bi00146a008. [DOI] [PubMed] [Google Scholar]
  4. Hurley J. H., Mason D. A., Matthews B. W. Flexible-geometry conformational energy maps for the amino acid residue preceding a proline. Biopolymers. 1992 Nov;32(11):1443–1446. doi: 10.1002/bip.360321104. [DOI] [PubMed] [Google Scholar]
  5. Imanaka T., Nakae M., Ohta T., Takagi M. Design of temperature-sensitive penicillinase repressors by replacement of Pro in predicted beta-turn structures. J Bacteriol. 1992 Feb;174(4):1423–1425. doi: 10.1128/jb.174.4.1423-1425.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ishikawa K., Kimura S., Kanaya S., Morikawa K., Nakamura H. Structural study of mutants of Escherichia coli ribonuclease HI with enhanced thermostability. Protein Eng. 1993 Jan;6(1):85–91. doi: 10.1093/protein/6.1.85. [DOI] [PubMed] [Google Scholar]
  7. Kimura S., Nakamura H., Hashimoto T., Oobatake M., Kanaya S. Stabilization of Escherichia coli ribonuclease HI by strategic replacement of amino acid residues with those from the thermophilic counterpart. J Biol Chem. 1992 Oct 25;267(30):21535–21542. [PubMed] [Google Scholar]
  8. Kizaki H., Hata Y., Watanabe K., Katsube Y., Suzuki Y. Polypeptide folding of Bacillus cereus ATCC7064 oligo-1,6-glucosidase revealed by 3.0 A resolution X-ray analysis. J Biochem. 1993 Jun;113(6):646–649. doi: 10.1093/oxfordjournals.jbchem.a124097. [DOI] [PubMed] [Google Scholar]
  9. Luo G. X., Horowitz P. M. The folding and stability of rhodanese are influenced by the replacement of glutamic acid 17 in the NH2-terminal helix by proline but not by glutamine. J Biol Chem. 1993 May 15;268(14):10246–10251. [PubMed] [Google Scholar]
  10. MacArthur M. W., Thornton J. M. Influence of proline residues on protein conformation. J Mol Biol. 1991 Mar 20;218(2):397–412. doi: 10.1016/0022-2836(91)90721-h. [DOI] [PubMed] [Google Scholar]
  11. Malcolm B. A., Wilson K. P., Matthews B. W., Kirsch J. F., Wilson A. C. Ancestral lysozymes reconstructed, neutrality tested, and thermostability linked to hydrocarbon packing. Nature. 1990 May 3;345(6270):86–89. doi: 10.1038/345086a0. [DOI] [PubMed] [Google Scholar]
  12. Matthews B. W., Nicholson H., Becktel W. J. Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6663–6667. doi: 10.1073/pnas.84.19.6663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Meade H. M., Long S. R., Ruvkun G. B., Brown S. E., Ausubel F. M. Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol. 1982 Jan;149(1):114–122. doi: 10.1128/jb.149.1.114-122.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Paoni N. F., Arroyo R. L. Improved method for detection of glycosidases in bacterial colonies. Appl Environ Microbiol. 1984 Jan;47(1):208–209. doi: 10.1128/aem.47.1.208-209.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pielak G. J., Auld D. S., Beasley J. R., Betz S. F., Cohen D. S., Doyle D. F., Finger S. A., Fredericks Z. L., Hilgen-Willis S., Saunders A. J. Protein thermal denaturation, side-chain models, and evolution: amino acid substitutions at a conserved helix-helix interface. Biochemistry. 1995 Mar 14;34(10):3268–3276. doi: 10.1021/bi00010a017. [DOI] [PubMed] [Google Scholar]
  16. Richardson J. S., Richardson D. C. Amino acid preferences for specific locations at the ends of alpha helices. Science. 1988 Jun 17;240(4859):1648–1652. doi: 10.1126/science.3381086. [DOI] [PubMed] [Google Scholar]
  17. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schimmel P. R., Flory P. J. Conformational energies and configurational statistics of copolypeptides containing L-proline. J Mol Biol. 1968 May 28;34(1):105–120. doi: 10.1016/0022-2836(68)90237-4. [DOI] [PubMed] [Google Scholar]
  19. Suzuki Y., Tomura Y. Purification and characterization of Bacillus coagulans oligo-1,6-glucosidase. Eur J Biochem. 1986 Jul 1;158(1):77–83. doi: 10.1111/j.1432-1033.1986.tb09723.x. [DOI] [PubMed] [Google Scholar]
  20. Suzuki Y., Yuki T., Kishigami T., Abe S. Purification and properties of extracellular alpha-glucosidase of a thermophile, Bacillus thermoglucosidus KP 1006. Biochim Biophys Acta. 1976 Sep 14;445(2):386–397. doi: 10.1016/0005-2744(76)90092-9. [DOI] [PubMed] [Google Scholar]
  21. Ueda T., Tamura T., Maeda Y., Hashimoto Y., Miki T., Yamada H., Imoto T. Stabilization of lysozyme by the introduction of Gly-Pro sequence. Protein Eng. 1993 Feb;6(2):183–187. doi: 10.1093/protein/6.2.183. [DOI] [PubMed] [Google Scholar]
  22. Vieira J., Messing J. Production of single-stranded plasmid DNA. Methods Enzymol. 1987;153:3–11. doi: 10.1016/0076-6879(87)53044-0. [DOI] [PubMed] [Google Scholar]
  23. Watanabe K., Chishiro K., Kitamura K., Suzuki Y. Proline residues responsible for thermostability occur with high frequency in the loop regions of an extremely thermostable oligo-1,6-glucosidase from Bacillus thermoglucosidasius KP1006. J Biol Chem. 1991 Dec 25;266(36):24287–24294. [PubMed] [Google Scholar]
  24. Watanabe K., Iha H., Ohashi A., Suzuki Y. Cloning and expression in Escherichia coli of an extremely thermostable oligo-1,6-glucosidase gene from Bacillus thermoglucosidasius. J Bacteriol. 1989 Feb;171(2):1219–1222. doi: 10.1128/jb.171.2.1219-1222.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Watanabe K., Kitamura K., Hata Y., Katsube Y., Suzuki Y. Overproduction, purification and crystallization of Bacillus cereus oligo-1,6-glucosidase. FEBS Lett. 1991 Sep 23;290(1-2):221–223. doi: 10.1016/0014-5793(91)81264-9. [DOI] [PubMed] [Google Scholar]
  26. Watanabe K., Kitamura K., Iha H., Suzuki Y. Primary structure of the oligo-1,6-glucosidase of Bacillus cereus ATCC7064 deduced from the nucleotide sequence of the cloned gene. Eur J Biochem. 1990 Sep 24;192(3):609–620. doi: 10.1111/j.1432-1033.1990.tb19267.x. [DOI] [PubMed] [Google Scholar]
  27. Watanabe K., Masuda T., Ohashi H., Mihara H., Suzuki Y. Multiple proline substitutions cumulatively thermostabilize Bacillus cereus ATCC7064 oligo-1,6-glucosidase. Irrefragable proof supporting the proline rule. Eur J Biochem. 1994 Dec 1;226(2):277–283. doi: 10.1111/j.1432-1033.1994.tb20051.x. [DOI] [PubMed] [Google Scholar]
  28. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES