Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1991 May;48(5):983–989.

2,8-Dihydroxyadenine lithiasis in a Japanese patient heterozygous at the adenine phosphoribosyltransferase locus.

A Sahota 1, J Chen 1, M A Behzadian 1, R Ravindra 1, H Takeuchi 1, P J Stambrook 1, J A Tischfield 1
PMCID: PMC1683049  PMID: 1673292

Abstract

All reported cases of 2,8-dihydroxyadenine (DHA) lithiasis have been due to functional homozygous deficiency of adenine phosphoribosyltransferase (APRT). Here we describe the first case of DHA lithiasis in a patient who has functional APRT activity in cultured lymphoblasts. The patient is heterozygous for Japanese-type (type II) APRT deficiency as demonstrated by starch-gel electrophoresis and DNA sequence analysis. We also demonstrate the use of starch-gel electrophoresis for differentiation between the type II mutant enzyme and the wild-type enzyme.

Full text

PDF
989

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dean B. M., Perrett D., Simmonds H. A., Sahota A., Van Acker K. J. Adenine and adenosine metabolism in intact erythrocytes deficient in adenosine monophosphate-pyrophosphate phosphoribosyltransferase: a study of two families. Clin Sci Mol Med. 1978 Oct;55(4):407–412. doi: 10.1042/cs0550407. [DOI] [PubMed] [Google Scholar]
  2. Falk J. S., Lindblad G. T., Westman B. J. Histopathological studies on kidneys from patients treated with large amounts of blood preserved with ACD-adenine. Transfusion. 1972 Nov-Dec;12(6):376–381. doi: 10.1111/j.1537-2995.1972.tb00029.x. [DOI] [PubMed] [Google Scholar]
  3. Fox I. H., LaCroix S., Planet G., Moore M. Partial deficiency of adenine phosphoribosyltransferase in man. Medicine (Baltimore) 1977 Nov;56(6):515–526. doi: 10.1097/00005792-197711000-00006. [DOI] [PubMed] [Google Scholar]
  4. Fujimori S., Akaoka I., Sakamoto K., Yamanaka H., Nishioka K., Kamatani N. Common characteristics of mutant adenine phosphoribosyltransferases from four separate Japanese families with 2,8-dihydroxyadenine urolithiasis associated with partial enzyme deficiencies. Hum Genet. 1985;71(2):171–176. doi: 10.1007/BF00283377. [DOI] [PubMed] [Google Scholar]
  5. Fujimori S., Akaoka I., Takeuchi F., Kanayama H., Tatara K., Nishioka K., Kamatani N. Altered kinetic properties of a mutant adenine phosphoribosyltransferase. Metabolism. 1986 Feb;35(2):187–192. doi: 10.1016/0026-0495(86)90122-8. [DOI] [PubMed] [Google Scholar]
  6. Hidaka Y., Palella T. D., O'Toole T. E., Tarlé S. A., Kelley W. N. Human adenine phosphoribosyltransferase. Identification of allelic mutations at the nucleotide level as a cause of complete deficiency of the enzyme. J Clin Invest. 1987 Nov;80(5):1409–1415. doi: 10.1172/JCI113219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hidaka Y., Tarlé S. A., Fujimori S., Kamatani N., Kelley W. N., Palella T. D. Human adenine phosphoribosyltransferase deficiency. Demonstration of a single mutant allele common to the Japanese. J Clin Invest. 1988 Mar;81(3):945–950. doi: 10.1172/JCI113408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hochstadt J. Adenine phosphoribosyltransferase from Escherichia coli. Methods Enzymol. 1978;51:558–567. doi: 10.1016/s0076-6879(78)51078-1. [DOI] [PubMed] [Google Scholar]
  9. Kamatani N., Kubota M., Willis E. H., Frincke L. A., Carson D. A. 5'-Methylthioadenosine is the major source of adenine in human cells. Adv Exp Med Biol. 1984;165(Pt B):83–88. doi: 10.1007/978-1-4757-0390-0_18. [DOI] [PubMed] [Google Scholar]
  10. Kamatani N., Kuroshima S., Terai C., Hidaka Y., Palella T. D., Nishioka K. Detection of an amino acid substitution in the mutant enzyme for a special type of adenine phosphoribosyltransferase (APRT) deficiency by sequence-specific protein cleavage. Am J Hum Genet. 1989 Aug;45(2):325–331. [PMC free article] [PubMed] [Google Scholar]
  11. Kamatani N., Terai C., Kuroshima S., Nishioka K., Mikanagi K. Genetic and clinical studies on 19 families with adenine phosphoribosyltransferase deficiencies. Hum Genet. 1987 Feb;75(2):163–168. doi: 10.1007/BF00591080. [DOI] [PubMed] [Google Scholar]
  12. Mizrahi A., Vosseller G. V., Yagi Y., Moore G. E. The effect of dissolved oxygen partial pressure on growth, metabolism and immunoglobulin production in a permanent human lymphocyte cell line culture. Proc Soc Exp Biol Med. 1972 Jan;139(1):118–122. doi: 10.3181/00379727-139-36092. [DOI] [PubMed] [Google Scholar]
  13. Mowbray S., Watson B., Harris H. A search for electrophoretic variants of human adenine phosphoribosyl transferase. Ann Hum Genet. 1972 Nov;36(2):153–162. doi: 10.1111/j.1469-1809.1972.tb00766.x. [DOI] [PubMed] [Google Scholar]
  14. Neitzel H. A routine method for the establishment of permanent growing lymphoblastoid cell lines. Hum Genet. 1986 Aug;73(4):320–326. doi: 10.1007/BF00279094. [DOI] [PubMed] [Google Scholar]
  15. Nichols E. A., Ruddle F. H. A review of enzyme polymorphism, linkage and electrophoretic conditions for mouse and somatic cell hybrids in starch gels. J Histochem Cytochem. 1973 Dec;21(12):1066–1081. doi: 10.1177/21.12.1066. [DOI] [PubMed] [Google Scholar]
  16. Sahota A., Chen J., Asaki K., Takeuchi H., Stambrook P. J., Tischfield J. A. Identification of a common nonsense mutation in Japanese patients with type I adenine phosphoribosyltransferase deficiency. Nucleic Acids Res. 1990 Oct 11;18(19):5915–5916. doi: 10.1093/nar/18.19.5915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sahota A., Webster D. R., Potter C. F., Simmonds H. A., Rodgers A. V., Gibson T. Methylthioadenosine phosphorylase activity in human erythrocytes. Clin Chim Acta. 1983 Mar 14;128(2-3):283–290. doi: 10.1016/0009-8981(83)90328-5. [DOI] [PubMed] [Google Scholar]
  18. Stambrook P. J., Dush M. K., Trill J. J., Tischfield J. A. Cloning of a functional human adenine phosphoribosyltransferase (APRT) gene: identification of a restriction fragment length polymorphism and preliminary analysis of DNAs from APRT-deficient families and cell mutants. Somat Cell Mol Genet. 1984 Jul;10(4):359–367. doi: 10.1007/BF01535631. [DOI] [PubMed] [Google Scholar]
  19. Tischfield J. A., Bernhard H. P., Ruddle F. H. A new electrophoretic-autoradiographic method for the visual detection of phosphotransferases. Anal Biochem. 1973 Jun;53(2):545–554. doi: 10.1016/0003-2697(73)90105-x. [DOI] [PubMed] [Google Scholar]
  20. Turker M. S., Martin G. M. Induction of adenine salvage in mouse cell lines deficient in adenine phosphoribosyltransferase. Mol Cell Biol. 1985 Oct;5(10):2662–2668. doi: 10.1128/mcb.5.10.2662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Turker M. S., Tischfield J. A., Rabinovitch P., Stambrook P. J., Trill J. J., Smith A. C., Ogburn C. E., Martin G. M. Differentiation alters the unstable expression of adenine phosphoribosyltransferase in mouse teratocarcinoma cells. J Exp Pathol. 1986 Summer;2(4):299–311. [PubMed] [Google Scholar]
  22. Williams-Ashman H. G., Seidenfeld J., Galletti P. Trends in the biochemical pharmacology of 5'-deoxy-5'-methylthioadenosine. Biochem Pharmacol. 1982 Feb 1;31(3):277–288. doi: 10.1016/0006-2952(82)90171-x. [DOI] [PubMed] [Google Scholar]
  23. Wilson J. M., O'Toole T. E., Argos P., Shewach D. S., Daddona P. E., Kelley W. N. Human adenine phosphoribosyltransferase. Complete amino acid sequence of the erythrocyte enzyme. J Biol Chem. 1986 Oct 15;261(29):13677–13683. [PubMed] [Google Scholar]
  24. Witney F. R., Taylor M. W. Role of adenine phosphoribosyltransferase in adenine uptake in wild-type and APRT- mutants of CHO. Biochem Genet. 1978 Oct;16(9-10):917–926. doi: 10.1007/BF00483743. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES