Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jan;63(1):106–114. doi: 10.1128/aem.63.1.106-114.1997

Comparison of primers and optimization of PCR conditions for detection of Cryptosporidium parvum and Giardia lamblia in water.

P A Rochelle 1, R De Leon 1, M H Stewart 1, R L Wolfe 1
PMCID: PMC168307  PMID: 8979344

Abstract

Eight pairs of published PCR primers were evaluated for the specific detection of Cryptosporidium parvum and Giardia lamblia in water. Detection sensitivities ranged from 1 to 10 oocysts or cysts for purified preparations and 5 to 50 oocysts or cysts for seeded environmental water samples. Maximum sensitivity was achieved with two successive rounds of amplification and hybridization, with oligonucleotide probes detected by chemiluminescence. Primer annealing temperatures and MgCl2 concentrations were optimized, and the specificities of the primer pairs were determined with closely related species. Some of the primers were species specific, while others were only genus specific. Multiplex PCR for the simultaneous detection of Cryptosporidium and Giardia was demonstrated with primers amplifying 256- and 163-bp products from the 18S rRNA gene of Cryptosporidium and the heat shock protein gene of Giardia, respectively. The results demonstrate the potential utility of PCR for the detection of pathogenic protozoa in water but emphasize the necessity of continued development.

Full Text

The Full Text of this article is available as a PDF (364.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Awad-el-Kariem F. M., Warhurst D. C., McDonald V. Detection and species identification of Cryptosporidium oocysts using a system based on PCR and endonuclease restriction. Parasitology. 1994 Jul;109(Pt 1):19–22. doi: 10.1017/s0031182000077714. [DOI] [PubMed] [Google Scholar]
  2. Benson D., Lipman D. J., Ostell J. GenBank. Nucleic Acids Res. 1993 Jul 1;21(13):2963–2965. doi: 10.1093/nar/21.13.2963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Filkorn R., Wiedenmann A., Botzenhart K. Selective detection of viable Cryptosporidium oocysts by PCR. Zentralbl Hyg Umweltmed. 1994 Jun;195(5-6):489–494. [PubMed] [Google Scholar]
  4. Glenn T. C., Waller D. R., Braun M. J. Increasing proportions of uracil in DNA substrates increases inhibition of restriction enzyme digests. Biotechniques. 1994 Dec;17(6):1086–1090. [PubMed] [Google Scholar]
  5. Johnson D. W., Pieniazek N. J., Griffin D. W., Misener L., Rose J. B. Development of a PCR protocol for sensitive detection of Cryptosporidium oocysts in water samples. Appl Environ Microbiol. 1995 Nov;61(11):3849–3855. doi: 10.1128/aem.61.11.3849-3855.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kreader C. A. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl Environ Microbiol. 1996 Mar;62(3):1102–1106. doi: 10.1128/aem.62.3.1102-1106.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Larsen N., Olsen G. J., Maidak B. L., McCaughey M. J., Overbeek R., Macke T. J., Marsh T. L., Woese C. R. The ribosomal database project. Nucleic Acids Res. 1993 Jul 1;21(13):3021–3023. doi: 10.1093/nar/21.13.3021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Laxer M. A., Timblin B. K., Patel R. J. DNA sequences for the specific detection of Cryptosporidium parvum by the polymerase chain reaction. Am J Trop Med Hyg. 1991 Dec;45(6):688–694. doi: 10.4269/ajtmh.1991.45.688. [DOI] [PubMed] [Google Scholar]
  9. Leng X., Mosier D. A., Oberst R. D. Simplified method for recovery and PCR detection of Cryptosporidium DNA from bovine feces. Appl Environ Microbiol. 1996 Feb;62(2):643–647. doi: 10.1128/aem.62.2.643-647.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Liesack W., Stackebrandt E. Occurrence of novel groups of the domain Bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. J Bacteriol. 1992 Aug;174(15):5072–5078. doi: 10.1128/jb.174.15.5072-5078.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mahbubani M. H., Bej A. K., Perlin M. H., Schaefer F. W., 3rd, Jakubowski W., Atlas R. M. Differentiation of Giardia duodenalis from other Giardia spp. by using polymerase chain reaction and gene probes. J Clin Microbiol. 1992 Jan;30(1):74–78. doi: 10.1128/jcm.30.1.74-78.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mahbubani M. H., Bej A. K., Perlin M., Schaefer F. W., 3rd, Jakubowski W., Atlas R. M. Detection of Giardia cysts by using the polymerase chain reaction and distinguishing live from dead cysts. Appl Environ Microbiol. 1991 Dec;57(12):3456–3461. doi: 10.1128/aem.57.12.3456-3461.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nieminski E. C., Schaefer F. W., 3rd, Ongerth J. E. Comparison of two methods for detection of Giardia cysts and Cryptosporidium oocysts in water. Appl Environ Microbiol. 1995 May;61(5):1714–1719. doi: 10.1128/aem.61.5.1714-1719.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rose J. B., Landeen L. K., Riley K. R., Gerba C. P. Evaluation of immunofluorescence techniques for detection of Cryptosporidium oocysts and Giardia cysts from environmental samples. Appl Environ Microbiol. 1989 Dec;55(12):3189–3196. doi: 10.1128/aem.55.12.3189-3196.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tebbe C. C., Vahjen W. Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl Environ Microbiol. 1993 Aug;59(8):2657–2665. doi: 10.1128/aem.59.8.2657-2665.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tsai Y. L., Olson B. H. Rapid method for separation of bacterial DNA from humic substances in sediments for polymerase chain reaction. Appl Environ Microbiol. 1992 Jul;58(7):2292–2295. doi: 10.1128/aem.58.7.2292-2295.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Vesey G., Hutton P., Champion A., Ashbolt N., Williams K. L., Warton A., Veal D. Application of flow cytometric methods for the routine detection of Cryptosporidium and Giardia in water. Cytometry. 1994 May 1;16(1):1–6. doi: 10.1002/cyto.990160102. [DOI] [PubMed] [Google Scholar]
  18. Wagner-Wiening C., Kimmig P. Detection of viable Cryptosporidium parvum oocysts by PCR. Appl Environ Microbiol. 1995 Dec;61(12):4514–4516. doi: 10.1128/aem.61.12.4514-4516.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Webster K. A., Pow J. D., Giles M., Catchpole J., Woodward M. J. Detection of Cryptosporidium parvum using a specific polymerase chain reaction. Vet Parasitol. 1993 Oct;50(1-2):35–44. doi: 10.1016/0304-4017(93)90005-8. [DOI] [PubMed] [Google Scholar]
  20. Weiss J. B., van Keulen H., Nash T. E. Classification of subgroups of Giardia lamblia based upon ribosomal RNA gene sequence using the polymerase chain reaction. Mol Biochem Parasitol. 1992 Aug;54(1):73–86. doi: 10.1016/0166-6851(92)90096-3. [DOI] [PubMed] [Google Scholar]
  21. Wu D. Y., Ugozzoli L., Pal B. K., Qian J., Wallace R. B. The effect of temperature and oligonucleotide primer length on the specificity and efficiency of amplification by the polymerase chain reaction. DNA Cell Biol. 1991 Apr;10(3):233–238. doi: 10.1089/dna.1991.10.233. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES