Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1990 Sep;47(3):440–445.

Identification of the base-pair substitution responsible for a human acid alpha glucosidase allele with lower "affinity" for glycogen (GAA 2) and transient gene expression in deficient cells.

F Martiniuk 1, M Bodkin 1, S Tzall 1, R Hirschhorn 1
PMCID: PMC1683879  PMID: 2203258

Abstract

The lysosomal enzyme termed acid alpha glucosidase (GAA), or acid maltase, is genetically polymorphic, with three alleles segregating in the normal population. The rarer GAA 2 allozyme has a lower affinity for glycogen and starch but not for lower-molecular-weight substrates. The GAA 2 allozyme can be detected by "affinity" electrophoresis in starch gel, since the lower affinity for the starch matrix results in a more rapid migration to the anode. Previously, we have isolated and sequenced the cDNA for GAA and transiently expressed the cDNA in deficient fibroblasts. In order to determine the molecular basis for the GAA 2 allozyme, we constructed a cDNA and a genomic DNA library from a GAA 2 cell line and determined the nucleotide sequence of the coding region. Only a single base-pair substitution of an A for a G at base-pair 271 was found, resulting in substitution of asparagine for aspartic acid at codon 91. This amino acid substitution is consistent with the more basic pI of the GAA 2 enzyme. The base-pair substitution also abolishes a Taq-I site, predicting the generation of a larger DNA fragment. This larger Taq-I fragment was also seen in two other individuals expressing the GAA 2 allozyme. A 5' fragment containing the base-pair substitution was ligated to the remaining 3' cDNA from a GAA 1 allele and cloned into an expression vector, and the hybrid cDNA was transiently expressed in SV40-transformed GAA-deficient fibroblasts. The enzyme activity exhibited the altered mobility of the GAA 2 allozyme, as demonstrated by electrophoresis in starch gel.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
442

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barker D., Schafer M., White R. Restriction sites containing CpG show a higher frequency of polymorphism in human DNA. Cell. 1984 Jan;36(1):131–138. doi: 10.1016/0092-8674(84)90081-3. [DOI] [PubMed] [Google Scholar]
  2. Barnes A. K., Wynn C. H. Homology of lysosomal enzymes and related proteins: prediction of posttranslational modification sites including phosphorylation of mannose and potential epitopic and substrate binding sites in the alpha- and beta-subunits of hexosaminidases, alpha-glucosidase, and rabbit and human isomaltase. Proteins. 1988;4(3):182–189. doi: 10.1002/prot.340040305. [DOI] [PubMed] [Google Scholar]
  3. Beratis N. G., LaBadie G. U., Hirschhorn K. Characterization of the molecular defect in infantile and adult acid alpha-glucosidase deficiency fibroblasts. J Clin Invest. 1978 Dec;62(6):1264–1274. doi: 10.1172/JCI109247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown B. I., Brown D. H. The subcellular distribution of enzymes in type II glycogenosis and the occurrence of an oligo-alpha-1,4-glucan glucohydrolase in human tissues. Biochim Biophys Acta. 1965 Oct 25;110(1):124–133. doi: 10.1016/s0926-6593(65)80101-1. [DOI] [PubMed] [Google Scholar]
  5. Cooper D. N., Youssoufian H. The CpG dinucleotide and human genetic disease. Hum Genet. 1988 Feb;78(2):151–155. doi: 10.1007/BF00278187. [DOI] [PubMed] [Google Scholar]
  6. Courtecuissf V., Royer P., Habib R., Monnier C., Demos J. Glycogenose musculaire par deficit d'alpha-1-4-glucosidase simulant une dystrophie musculaire progressive. (Etude clinique et enzymatique. Microscopie optique electronique) Arch Fr Pediatr. 1965 Dec;22(10):1153–1164. [PubMed] [Google Scholar]
  7. Engel A. G., Gomez M. R., Seybold M. E., Lambert E. H. The spectrum and diagnosis of acid maltase deficiency. Neurology. 1973 Jan;23(1):95–106. doi: 10.1212/wnl.23.1.95. [DOI] [PubMed] [Google Scholar]
  8. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  9. HERS H. G. alpha-Glucosidase deficiency in generalized glycogenstorage disease (Pompe's disease). Biochem J. 1963 Jan;86:11–16. doi: 10.1042/bj0860011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hasilik A., Neufeld E. F. Biosynthesis of lysosomal enzymes in fibroblasts. Synthesis as precursors of higher molecular weight. J Biol Chem. 1980 May 25;255(10):4937–4945. [PubMed] [Google Scholar]
  11. Hoefsloot L. H., Hoogeveen-Westerveld M., Kroos M. A., van Beeumen J., Reuser A. J., Oostra B. A. Primary structure and processing of lysosomal alpha-glucosidase; homology with the intestinal sucrase-isomaltase complex. EMBO J. 1988 Jun;7(6):1697–1704. doi: 10.1002/j.1460-2075.1988.tb02998.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kornfeld S. Trafficking of lysosomal enzymes in normal and disease states. J Clin Invest. 1986 Jan;77(1):1–6. doi: 10.1172/JCI112262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Martiniuk F., Ellenbogen A., Hirschhorn K., Hirschhorn R. Further regional localization of the genes for human acid alpha glucosidase (GAA), peptidase D (PEPD), and alpha mannosidase B (MANB) by somatic cell hybridization. Hum Genet. 1985;69(2):109–111. doi: 10.1007/BF00293278. [DOI] [PubMed] [Google Scholar]
  14. Martiniuk F., Hirschhorn R. Characterization of neutral isozymes of human alpha-glucosidase: differences in substrate specificity, molecular weight and electrophoretic mobility. Biochim Biophys Acta. 1981 Apr 14;658(2):248–261. doi: 10.1016/0005-2744(81)90295-3. [DOI] [PubMed] [Google Scholar]
  15. Martiniuk F., Honig J., Hirschhorn R. Further studies of the structure of human placental acid alpha-glucosidase. Arch Biochem Biophys. 1984 Jun;231(2):454–460. doi: 10.1016/0003-9861(84)90408-9. [DOI] [PubMed] [Google Scholar]
  16. Martiniuk F., Mehler M., Pellicer A., Tzall S., La Badie G., Hobart C., Ellenbogen A., Hirschhorn R. Isolation of a cDNA for human acid alpha-glucosidase and detection of genetic heterogeneity for mRNA in three alpha-glucosidase-deficient patients. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9641–9644. doi: 10.1073/pnas.83.24.9641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Martiniuk F., Pellicer A., Hirschhorn R. Transient expression of human neutral alpha-glucosidase AB (glucosidase II) in enzyme-deficient mouse lymphoma cells. J Biol Chem. 1985 Nov 15;260(26):14351–14354. [PubMed] [Google Scholar]
  18. Mehler M., DiMauro S. Residual acid maltase activity in late-onset acid maltase deficiency. Neurology. 1977 Feb;27(2):178–184. doi: 10.1212/wnl.27.2.178. [DOI] [PubMed] [Google Scholar]
  19. Nickel B. E., McAlpine P. J. Extension of human acid alpha-glucosidase polymorphism by isoelectric focusing in polyacrylamide gel. Ann Hum Genet. 1982 May;46(Pt 2):97–103. doi: 10.1111/j.1469-1809.1982.tb00700.x. [DOI] [PubMed] [Google Scholar]
  20. Orkin S. H., Goff S. C., Kelley W. N., Daddona P. E. Transient expression of human adenosine deaminase cDNAs: identification of a nonfunctional clone resulting from a single amino acid substitution. Mol Cell Biol. 1985 Apr;5(4):762–767. doi: 10.1128/mcb.5.4.762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Quon D. V., Proia R. L., Fowler A. V., Bleibaum J., Neufeld E. F. Proteolytic processing of the beta-subunit of the lysosomal enzyme, beta-hexosaminidase, in normal human fibroblasts. J Biol Chem. 1989 Feb 25;264(6):3380–3384. [PubMed] [Google Scholar]
  22. Reuser A. J., Kroos M., Oude Elferink R. P., Tager J. M. Defects in synthesis, phosphorylation, and maturation of acid alpha-glucosidase in glycogenosis type II. J Biol Chem. 1985 Jul 15;260(14):8336–8341. [PubMed] [Google Scholar]
  23. Reuser A. J., Kroos M., Willemsen R., Swallow D., Tager J. M., Galjaard H. Clinical diversity in glycogenosis type II. Biosynthesis and in situ localization of acid alpha-glucosidase in mutant fibroblasts. J Clin Invest. 1987 Jun;79(6):1689–1699. doi: 10.1172/JCI113008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  26. Swallow D. M., Corney G., Harris H., Hirschhorn R. Acid alpha-glucosidase: a new polymorphism in man demonstrable by 'affinity' electrophoresis. Ann Hum Genet. 1975 May;38(4):391–406. doi: 10.1111/j.1469-1809.1975.tb00629.x. [DOI] [PubMed] [Google Scholar]
  27. Swallow D. M., Kroos M., Van der Ploeg A. T., Griffiths B., Islam I., Marenah C. B., Reuser A. J. An investigation of the properties and possible clinical significance of the lysosomal alpha-glucosidase GAA*2 allele. Ann Hum Genet. 1989 May;53(Pt 2):177–184. doi: 10.1111/j.1469-1809.1989.tb01782.x. [DOI] [PubMed] [Google Scholar]
  28. Van der Ploeg A. T., Hoefsloot L. H., Hoogeveen-Westerveld M., Petersen E. M., Reuser A. J. Glycogenosis type II: protein and DNA analysis in five South African families from various ethnic origins. Am J Hum Genet. 1989 Jun;44(6):787–793. [PMC free article] [PubMed] [Google Scholar]
  29. Wigler M., Pellicer A., Silverstein S., Axel R. Biochemical transfer of single-copy eucaryotic genes using total cellular DNA as donor. Cell. 1978 Jul;14(3):725–731. doi: 10.1016/0092-8674(78)90254-4. [DOI] [PubMed] [Google Scholar]
  30. de Barsy T., Jacquemin P., Devos P., Hers H. G. Rodent and human acid -glucosidase. Purification, properties and inhibition by antibodies. Investigation in type II glycogenosis. Eur J Biochem. 1972 Nov 21;31(1):156–165. doi: 10.1111/j.1432-1033.1972.tb02514.x. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES