Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1980 Nov;32(6):898–907.

Characterization of ACP1TIC-1, an electrophoretic variant of erythrocyte acid phosphatase restricted to the Ticuna Indians of central Amazonas.

C M Yoshihara, H W Mohrenweiser
PMCID: PMC1686170  PMID: 7446528

Abstract

A new variant of erythrocyte acid phosphatase, designated ACP1TIC-1, is characterized by a more cathodal electrophoretic mobility than any of the common polymorphic phenotypes, both in the presence and absence of tricarboxylic acids. Individuals of the ACP1TIC-1 phenotype have a level of enzyme activity (4.8 +/- 0.1 mumol/g hemoglobin per min) similar to individuals of the ACP1A phenotype, although no differences in Km values were observed or is the extent of phosphate inhibition different between the ACP1TIC-1 and the ACP1B variants. The thermostability of the enzyme is less than that observed for any of the common variants. The TIC-1 variant is activated by adenine and inhibited by folic acid to the same extent as the type-A enzyme, while the stimulation of the activity of the TIC-1 enzyme by hypoxanthine and the inhibition of it by uric acid is similar to that for the B enzyme. Thus, the TIC-1 variant has a unique combination of kinetic properties, seeming to be a hybrid of A-type and B-type characteristics.

Full text

PDF
902

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bottini E., Lucarelli P., Agostino R., Palmarino R., Businco L., Antognoni G. Favism: association with erythrocyte acid phosphatase phenotype. Science. 1971 Jan 29;171(3969):409–411. doi: 10.1126/science.171.3969.409. [DOI] [PubMed] [Google Scholar]
  2. Bottini E., Scacchi R., Gloria-Bottini F., Mortera J., Palmarino R., Carapella-De-Luca E., Lapi A. S., Nodari C. Letter: Neonatal jaundice and erythrocyte-acid-phosphatase phenotype. Lancet. 1976 Apr 24;1(7965):918–918. doi: 10.1016/s0140-6736(76)92148-6. [DOI] [PubMed] [Google Scholar]
  3. Eze L. C., Tweedie M. C., Bullen M. F., Wren P. J., Evans D. A. Quantitative genetics of human red cell acid phosphatase. Ann Hum Genet. 1974 Jan;37(3):333–340. doi: 10.1111/j.1469-1809.1974.tb01840.x. [DOI] [PubMed] [Google Scholar]
  4. Fenton M. R., Richardson K. E. Human erythrocytic acid phosphatase: resolution and characterization of the isozymes from three homozygous phenotypes. Arch Biochem Biophys. 1971 Jan;142(1):13–21. doi: 10.1016/0003-9861(71)90254-2. [DOI] [PubMed] [Google Scholar]
  5. Fielek S., Mohrenweiser H. W. Erythrocyte enzyme deficiencies assessed with a miniature centrifugal analyzer. Clin Chem. 1979 Mar;25(3):384–388. [PubMed] [Google Scholar]
  6. Fildes R. A., Harris H. Genetically determined variation of adenylate kinase in man. Nature. 1966 Jan 15;209(5020):261–263. doi: 10.1038/209261a0. [DOI] [PubMed] [Google Scholar]
  7. Fisher R. A., Harris H. Studies on the separate isozymes of red cell acid phosphatase phenotypes A and B. II. Comparison of kinetics and stabilities of the isozymes. Ann Hum Genet. 1971 May;34(4):439–448. doi: 10.1111/j.1469-1809.1971.tb00257.x. [DOI] [PubMed] [Google Scholar]
  8. HOPKINSON D. A., SPENCER N., HARRIS H. GENETICAL STUDIES ON HUMAN RED CELL ACID PHOSPHATASE. Am J Hum Genet. 1964 Mar;16:141–154. [PMC free article] [PubMed] [Google Scholar]
  9. Luffman J. E., Harris H. A comparison of some properties of human red cell acid phosphatase in different phenotypes. Ann Hum Genet. 1967 May;30(4):387–401. doi: 10.1111/j.1469-1809.1967.tb00040.x. [DOI] [PubMed] [Google Scholar]
  10. Mansfield E., Sensabaugh G. F. Red cell acid phosphatase: modulation of activity by purines. Prog Clin Biol Res. 1978;21:233–249. [PubMed] [Google Scholar]
  11. Neel J. V. Rare variants, private polymorphisms, and locus heterozygosity in Amerindian populations. Am J Hum Genet. 1978 Sep;30(5):465–490. [PMC free article] [PubMed] [Google Scholar]
  12. Rogers P. A., Fisher R. A., Putt W. An examination of the age-related patterns of decay of acid phosphatase (ACP1) in human red cells from individuals of different phenotypes. Biochem Genet. 1978 Aug;16(7-8):727–738. doi: 10.1007/BF00484729. [DOI] [PubMed] [Google Scholar]
  13. SPENCER N., HOPKINSON D. A., HARRIS H. PHOSPHOGLUCOMUTASE POLYMORPHISM IN MAN. Nature. 1964 Nov 21;204:742–745. doi: 10.1038/204742a0. [DOI] [PubMed] [Google Scholar]
  14. SPENCER N., HOPKINSON D. A., HARRIS H. QUANTITATIVE DIFFERENCES AND GENE DOSAGE IN THE HUMAN RED CELL ACID PHOSPHATASE POLYMORPHISM. Nature. 1964 Jan 18;201:299–300. doi: 10.1038/201299a0. [DOI] [PubMed] [Google Scholar]
  15. Scott E. M. Kinetic comparison of genetically different acid phosphatases of human erythrocytes. J Biol Chem. 1966 Jul 10;241(13):3049–3052. [PubMed] [Google Scholar]
  16. Sensabaugh G. F., Golden V. L. Phenotype dependence in the inhibition of red cell acid phosphatase (ACP) by folates. Am J Hum Genet. 1978 Sep;30(5):553–560. [PMC free article] [PubMed] [Google Scholar]
  17. Swallow D. M., Povey S., Harris H. Activity of the "red cell" acid phosphatase locus in other tissues. Ann Hum Genet. 1973 Jul;37(1):31–38. doi: 10.1111/j.1469-1809.1973.tb01812.x. [DOI] [PubMed] [Google Scholar]
  18. Tiffany T. O., Chilcote D. D., Burtis C. A. Evaluation of kinetic enzyme parameters by use of a small computer interfaced "Fast Analyzer"--an addition to automated clinical enzymology. Clin Chem. 1973 Aug;19(8):908–918. [PubMed] [Google Scholar]
  19. VALENTINE W. N., TANAKA K. R., FREDRICKS R. E. Erythrocyte acid phosphatase in health and disease. Am J Clin Pathol. 1961 Oct;36:328–332. doi: 10.1093/ajcp/36.4.328. [DOI] [PubMed] [Google Scholar]
  20. WILKINSON G. N. Statistical estimations in enzyme kinetics. Biochem J. 1961 Aug;80:324–332. doi: 10.1042/bj0800324. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES