Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Sep;63(9):3600–3606. doi: 10.1128/aem.63.9.3600-3606.1997

Diversity of the ribulose bisphosphate carboxylase/oxygenase form I gene (rbcL) in natural phytoplankton communities.

S L Pichard 1, L Campbell 1, J H Paul 1
PMCID: PMC168667  PMID: 9293012

Abstract

The phytoplankton of the world's oceans play an integral part in global carbon cycling and food webs by conversion of carbon dioxide into organic carbon. They accomplish this task through the action of the Calvin cycle enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Here we have investigated the phylogenetic diversity in the form I rbcL locus in natural phytoplankton communities of the open ocean and representative clones of marine autotrophic picoplankton by mRNA or DNA amplification and sequencing of a 480 to 483 bp internal fragment of this gene. Five gene sequences were recovered from nucleic acids of natural phytoplankton communities of the Gulf of Mexico. The rbcL genes of two Prochlorococcus isolates and one Synechococcus strain (WH8007) were also sequenced. Sequences were aligned with the database of rbcL genes and subjected to both neighbor-joining and parsimony analyses. The five sequences from the natural phytoplankton community spanned nearly the entire diversity of characterized form I rbcL genes, with some sequences closely related to isolates such as Synechococcus and Prochlorococcus (forms IA and I) and prymnesiophyte algae (form ID), while other sequences were deeply rooted. Unexpectedly, the deep euphotic zone contained an organism that possesses a transcriptionally active rbcL gene closely related to that of a recently characterized manganese-oxidizing bacterium, suggesting that such chemoautotrophs may contribute to the diversity of carbon-fixing organisms in the marine euphotic zone.

Full Text

The Full Text of this article is available as a PDF (209.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker-André M. Absolute levels of mRNA by polymerase chain reaction-aided transcript titration assay. Methods Enzymol. 1993;218:420–445. doi: 10.1016/0076-6879(93)18034-a. [DOI] [PubMed] [Google Scholar]
  2. Caspi R., Haygood M. G., Tebo B. M. Unusual ribulose-1,5-bisphosphate carboxylase/oxygenase genes from a marine manganese-oxidizing bacterium. Microbiology. 1996 Sep;142(Pt 9):2549–2559. doi: 10.1099/00221287-142-9-2549. [DOI] [PubMed] [Google Scholar]
  3. Chernykh N. A. Ispol'zovanie polimeraznoi tsepnoi reaktsii dlia detektsii gena RBFK v prirodnykh obraztsakh. Mikrobiologiia. 1995 Nov-Dec;64(6):792–796. [PubMed] [Google Scholar]
  4. Clegg M. T. Chloroplast gene sequences and the study of plant evolution. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):363–367. doi: 10.1073/pnas.90.2.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DeLong E. F. Archaea in coastal marine environments. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5685–5689. doi: 10.1073/pnas.89.12.5685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Delwiche C. F., Kuhsel M., Palmer J. D. Phylogenetic analysis of tufA sequences indicates a cyanobacterial origin of all plastids. Mol Phylogenet Evol. 1995 Jun;4(2):110–128. doi: 10.1006/mpev.1995.1012. [DOI] [PubMed] [Google Scholar]
  7. Delwiche C. F., Palmer J. D. Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids. Mol Biol Evol. 1996 Jul;13(6):873–882. doi: 10.1093/oxfordjournals.molbev.a025647. [DOI] [PubMed] [Google Scholar]
  8. Fuhrman J. A., McCallum K., Davis A. A. Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl Environ Microbiol. 1993 May;59(5):1294–1302. doi: 10.1128/aem.59.5.1294-1302.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Giovannoni S. J., Britschgi T. B., Moyer C. L., Field K. G. Genetic diversity in Sargasso Sea bacterioplankton. Nature. 1990 May 3;345(6270):60–63. doi: 10.1038/345060a0. [DOI] [PubMed] [Google Scholar]
  10. Golenberg E. M., Giannasi D. E., Clegg M. T., Smiley C. J., Durbin M., Henderson D., Zurawski G. Chloroplast DNA sequence from a miocene Magnolia species. Nature. 1990 Apr 12;344(6267):656–658. doi: 10.1038/344656a0. [DOI] [PubMed] [Google Scholar]
  11. Jung V., Pestka S. B., Pestka S. Cloning of polymerase chain reaction-generated DNA containing terminal restriction endonuclease recognition sites. Methods Enzymol. 1993;218:357–362. doi: 10.1016/0076-6879(93)18027-a. [DOI] [PubMed] [Google Scholar]
  12. Morse D., Salois P., Markovic P., Hastings J. W. A nuclear-encoded form II RuBisCO in dinoflagellates. Science. 1995 Jun 16;268(5217):1622–1624. doi: 10.1126/science.7777861. [DOI] [PubMed] [Google Scholar]
  13. Moyer C. L., Dobbs F. C., Karl D. M. Estimation of diversity and community structure through restriction fragment length polymorphism distribution analysis of bacterial 16S rRNA genes from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl Environ Microbiol. 1994 Mar;60(3):871–879. doi: 10.1128/aem.60.3.871-879.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nelissen B., Van de Peer Y., Wilmotte A., De Wachter R. An early origin of plastids within the cyanobacterial divergence is suggested by evolutionary trees based on complete 16S rRNA sequences. Mol Biol Evol. 1995 Nov;12(6):1166–1173. doi: 10.1093/oxfordjournals.molbev.a040289. [DOI] [PubMed] [Google Scholar]
  15. Page R. D. TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci. 1996 Aug;12(4):357–358. doi: 10.1093/bioinformatics/12.4.357. [DOI] [PubMed] [Google Scholar]
  16. Palenik B. Cyanobacterial community structure as seen from RNA polymerase gene sequence analysis. Appl Environ Microbiol. 1994 Sep;60(9):3212–3219. doi: 10.1128/aem.60.9.3212-3219.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Palenik B., Haselkorn R. Multiple evolutionary origins of prochlorophytes, the chlorophyll b-containing prokaryotes. Nature. 1992 Jan 16;355(6357):265–267. doi: 10.1038/355265a0. [DOI] [PubMed] [Google Scholar]
  18. Palmer J. D. Rubisco rules fall; gene transfer triumphs. Bioessays. 1995 Dec;17(12):1005–1008. doi: 10.1002/bies.950171202. [DOI] [PubMed] [Google Scholar]
  19. Paul J. H., Cazares L., Thurmond J. Amplification of the rbcL gene from dissolved and particulate DNA from aquatic environments. Appl Environ Microbiol. 1990 Jun;56(6):1963–1966. doi: 10.1128/aem.56.6.1963-1966.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Paul JH. Carbon Cycling: Molecular Regulation of Photosynthetic Carbon Fixation. Microb Ecol. 1996 Nov;32(3):231–245. doi: 10.1007/BF00183060. [DOI] [PubMed] [Google Scholar]
  21. Pichard Scott L., Paul John H. Detection of Gene Expression in Genetically Engineered Microorganisms and Natural Phytoplankton Populations in the Marine Environment by mRNA Analysis. Appl Environ Microbiol. 1991 Jun;57(6):1721–1727. doi: 10.1128/aem.57.6.1721-1727.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Preston G. M. Polymerase chain reaction with degenerate oligonucleotide primers to clone gene family members. Methods Mol Biol. 1996;58:303–312. doi: 10.1385/0-89603-402-X:303. [DOI] [PubMed] [Google Scholar]
  23. Read B. A., Tabita F. R. High substrate specificity factor ribulose bisphosphate carboxylase/oxygenase from eukaryotic marine algae and properties of recombinant cyanobacterial RubiSCO containing "algal" residue modifications. Arch Biochem Biophys. 1994 Jul;312(1):210–218. doi: 10.1006/abbi.1994.1301. [DOI] [PubMed] [Google Scholar]
  24. Rowan R., Whitney S. M., Fowler A., Yellowlees D. Rubisco in marine symbiotic dinoflagellates: form II enzymes in eukaryotic oxygenic phototrophs encoded by a nuclear multigene family. Plant Cell. 1996 Mar;8(3):539–553. doi: 10.1105/tpc.8.3.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Saunders G. W., Potter D., Paskind M. P., Andersen R. A. Cladistic analyses of combined traditional and molecular data sets reveal an algal lineage. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):244–248. doi: 10.1073/pnas.92.1.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shimada A., Kanai S., Maruyama T. Partial sequence of ribulose-1,5-bisphosphate carboxylase/oxygenase and the phylogeny of Prochloron and Prochlorococcus (Prochlorales). J Mol Evol. 1995 Jun;40(6):671–677. doi: 10.1007/BF00160516. [DOI] [PubMed] [Google Scholar]
  27. Steel M. A., Lockhart P. J., Penny D. Confidence in evolutionary trees from biological sequence data. Nature. 1993 Jul 29;364(6436):440–442. doi: 10.1038/364440a0. [DOI] [PubMed] [Google Scholar]
  28. Urbach E., Robertson D. L., Chisholm S. W. Multiple evolutionary origins of prochlorophytes within the cyanobacterial radiation. Nature. 1992 Jan 16;355(6357):267–270. doi: 10.1038/355267a0. [DOI] [PubMed] [Google Scholar]
  29. Valentin K., Zetsche K. The genes of both subunits of ribulose-1,5-bisphosphate carboxylase constitute an operon on the plastome of a red alga. Curr Genet. 1989 Sep;16(3):203–209. doi: 10.1007/BF00391478. [DOI] [PubMed] [Google Scholar]
  30. Watson G. M., Tabita F. R. Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a molecule for phylogenetic and enzymological investigation. FEMS Microbiol Lett. 1997 Jan 1;146(1):13–22. doi: 10.1111/j.1574-6968.1997.tb10165.x. [DOI] [PubMed] [Google Scholar]
  31. Watson G. M., Tabita F. R. Regulation, unique gene organization, and unusual primary structure of carbon fixation genes from a marine phycoerythrin-containing cyanobacterium. Plant Mol Biol. 1996 Dec;32(6):1103–1115. doi: 10.1007/BF00041394. [DOI] [PubMed] [Google Scholar]
  32. Wolfe K. H., Li W. H., Sharp P. M. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9054–9058. doi: 10.1073/pnas.84.24.9054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Xu H. H., Tabita F. R. Ribulose-1,5-bisphosphate carboxylase/oxygenase gene expression and diversity of Lake Erie planktonic microorganisms. Appl Environ Microbiol. 1996 Jun;62(6):1913–1921. doi: 10.1128/aem.62.6.1913-1921.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Zehr J. P., McReynolds L. A. Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol. 1989 Oct;55(10):2522–2526. doi: 10.1128/aem.55.10.2522-2526.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES