Skip to main content
The Canadian Veterinary Journal logoLink to The Canadian Veterinary Journal
. 1995 May;36(5):295–301.

The ecology of anthrax spores: tough but not invincible.

D C Dragon 1, R P Rennie 1
PMCID: PMC1686874  PMID: 7773917

Abstract

Bacillus anthracis is the causative agent of anthrax, a serious and often fatal disease of wild and domestic animals. Central to the persistence of anthrax in an area is the ability of B. anthracis to form long-lasting, highly resistant spores. Understanding the ecology of anthrax spores is essential if one hopes to control epidemics. Studies on the ecology of anthrax have found a correlation between the disease and specific soil factors, such as alkaline pH, high moisture, and high organic content. Researchers initially suggested that these factors influenced vegetative anthrax bacilli. However, subsequent research has shown that vegetative cells of B. anthracis have very specific nutrient and physiological requirements and are unlikely to survive outside a host. Review of the properties of spores of B. anthracis and other Bacillus species suggests that the specific soil factors linked to epidemic areas reflect important environmental conditions that aid the anthrax spores in causing epidemics. Specifically, high levels of calcium in the soil may help to maintain spore vitality for prolonged periods, thereby increasing the chance of spores encountering and infecting a new host. Cycles of runoff and evaporation may collect spores dispersed from previous epidemics into storage areas, thereby concentrating them. Uptake of large doses of viable spores from storage areas by susceptible animals, via altered feeding or breeding behavior, may then allow the bacterium to establish infection and cause a new epidemic. Literature search for this review was done by scanning the Life Sciences Collection 1982-1994 using the keywords "anthrax" and "calcium and spore."

Full text

PDF
296

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLACK S. H., GERHARDT P. Permeability of bacterial spores. I. Characterization of glucose uptake. J Bacteriol. 1961 Nov;82:743–749. doi: 10.1128/jb.82.5.743-749.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bakken L. R. Separation and purification of bacteria from soil. Appl Environ Microbiol. 1985 Jun;49(6):1482–1487. doi: 10.1128/aem.49.6.1482-1487.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Broughton E. Northwest Territories. Anthrax in bison in Wood Buffalo National Park. Can Vet J. 1992 Feb;33(2):134–135. [PMC free article] [PubMed] [Google Scholar]
  4. Foerster H. F., Foster J. W. Endotrophic calcium, strontium, and barium spores of Bacillus megaterium and Bacillus cereus. J Bacteriol. 1966 Mar;91(3):1333–1345. doi: 10.1128/jb.91.3.1333-1345.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Foster S. J., Johnstone K. Pulling the trigger: the mechanism of bacterial spore germination. Mol Microbiol. 1990 Jan;4(1):137–141. doi: 10.1111/j.1365-2958.1990.tb02023.x. [DOI] [PubMed] [Google Scholar]
  6. GERHARDT P., BLACK S. H. Permeability of bacterial spores. II. Molecular variables affecting solute permeation. J Bacteriol. 1961 Nov;82:750–760. doi: 10.1128/jb.82.5.750-760.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gainer R. S., Saunders J. R. Aspects of the epidemiology of anthrax in Wood Buffalo National Park and environs. Can Vet J. 1989 Dec;30(12):953–956. [PMC free article] [PubMed] [Google Scholar]
  8. Gould G. W. Recent advances in the understanding of resistance and dormancy in bacterial spores. J Appl Bacteriol. 1977 Jun;42(3):297–309. doi: 10.1111/j.1365-2672.1977.tb00697.x. [DOI] [PubMed] [Google Scholar]
  9. Grecz N., Tang T. Relation of dipicolinic acid to heat resistance of bacterial spores. J Gen Microbiol. 1970 Nov;63(3):303–310. doi: 10.1099/00221287-63-3-303. [DOI] [PubMed] [Google Scholar]
  10. Heath K. B., Brewitt J. M. A winter outbreak of anthrax in cattle in Saskatchewan. Can Vet J. 1982 Oct;23(10):302–303. [PMC free article] [PubMed] [Google Scholar]
  11. Hugh-Jones M. E., Hussaini S. N. Anthrax in England and Wales 1963-1972. Vet Rec. 1975 Oct 4;97(14):256–261. doi: 10.1136/vr.97.14.256. [DOI] [PubMed] [Google Scholar]
  12. KEPPIE J., SMITH H., HARRIS-SMITH P. W. The chemical basis of the virulence of Bacillus anthracis. III. The role of the terminal bacteraemia in death of guinea-pigs from anthrax. Br J Exp Pathol. 1955 Jun;36(3):315–322. [PMC free article] [PubMed] [Google Scholar]
  13. Kamat A. S., Lewis N. F., Pradhan D. S. Mechanism of Ca2+ and dipicolinic acid requirement for L-alanine induced germination of Bacillus cereus BIS-59 spores. Microbios. 1985;44(177):33–44. [PubMed] [Google Scholar]
  14. Koshikawa T., Yamazaki M., Yoshimi M., Ogawa S., Yamada A., Watabe K., Torii M. Surface hydrophobicity of spores of Bacillus spp. J Gen Microbiol. 1989 Oct;135(10):2717–2722. doi: 10.1099/00221287-135-10-2717. [DOI] [PubMed] [Google Scholar]
  15. LaForce F. M., Bumford F. H., Feeley J. C., Stokes S. L., Snow D. B. Epidemiologic study of a fatal case of inhalation anthrax. Arch Environ Health. 1969 May;18(5):798–805. doi: 10.1080/00039896.1969.10665490. [DOI] [PubMed] [Google Scholar]
  16. Manchee R. J., Broster M. G., Melling J., Henstridge R. M., Stagg A. J. Bacillus anthracis on Gruinard Island. Nature. 1981 Nov 19;294(5838):254–255. doi: 10.1038/294254a0. [DOI] [PubMed] [Google Scholar]
  17. McKendrick D. R. Anthrax and its transmission to humans. Cent Afr J Med. 1980 Jun;26(6):126–129. [PubMed] [Google Scholar]
  18. Nishihara T., Ichikawa T., Kondo M. Location of elements in ashed spores of Bacillus megaterium. Microbiol Immunol. 1980;24(6):495–506. doi: 10.1111/j.1348-0421.1980.tb02853.x. [DOI] [PubMed] [Google Scholar]
  19. Nishihara T., Kondo M., Nonaka T., Higashi Y. Location of calcium and phosphorus in ashed spores of Bacillus megaterium, determined by electron probe x-ray microanalysis. Microbiol Immunol. 1982;26(2):167–172. doi: 10.1111/j.1348-0421.1982.tb00166.x. [DOI] [PubMed] [Google Scholar]
  20. Pienaar U. D. Epidemiology of anthrax in wild animals and the control of anthrax epizootics in the Kruger National Park, South Africa. Fed Proc. 1967 Sep;26(5):1496–1502. [PubMed] [Google Scholar]
  21. Popham D. L., Setlow P. The cortical peptidoglycan from spores of Bacillus megaterium and Bacillus subtilis is not highly cross-linked. J Bacteriol. 1993 May;175(9):2767–2769. doi: 10.1128/jb.175.9.2767-2769.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rode L. J., Foster J. W. Quantitative aspects of exchangeable calcium in spores of Bacillus megaterium. J Bacteriol. 1966 Apr;91(4):1589–1593. doi: 10.1128/jb.91.4.1589-1593.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rowley D. B., Levinson H. S. Changes in spores of Bacillus megaterium treated with thioglycolate at a low pH and restoration of germinability and heat resistance by cations. J Bacteriol. 1967 Mar;93(3):1017–1022. doi: 10.1128/jb.93.3.1017-1022.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. SMITH H., KEPPIE J. Observations on experimental anthrax; demonstration of a specific lethal factor produced in vivo by Bacillus anthracis. Nature. 1954 May 8;173(4410):869–870. doi: 10.1038/173869a0. [DOI] [PubMed] [Google Scholar]
  25. Shibata H., Miyoshi S., Osato T., Tani I., Hashimoto T. Involvement of calcium in germination of coat-modified spores of Bacillus cereus T. Microbiol Immunol. 1992;36(9):935–946. doi: 10.1111/j.1348-0421.1992.tb02097.x. [DOI] [PubMed] [Google Scholar]
  26. Stastná J., Vinter V. Spores of microorganisms. 23. Interdependence of intra- and extra-cellular levels of calcium: its effect on the germination of bacterial spores in different media. Folia Microbiol (Praha) 1970;15(2):103–110. doi: 10.1007/BF02880091. [DOI] [PubMed] [Google Scholar]
  27. Stewart M., Somlyo A. P., Somlyo A. V., Shuman H., Lindsay J. A., Murrell W. G. Distribution of calcium and other elements in cryosectioned Bacillus cereus T spores, determined by high-resolution scanning electron probe x-ray microanalysis. J Bacteriol. 1980 Jul;143(1):481–491. doi: 10.1128/jb.143.1.481-491.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Turell M. J., Knudson G. B. Mechanical transmission of Bacillus anthracis by stable flies (Stomoxys calcitrans) and mosquitoes (Aedes aegypti and Aedes taeniorhynchus). Infect Immun. 1987 Aug;55(8):1859–1861. doi: 10.1128/iai.55.8.1859-1861.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Turnbull P. C. Anthrax vaccines: past, present and future. Vaccine. 1991 Aug;9(8):533–539. doi: 10.1016/0264-410x(91)90237-z. [DOI] [PubMed] [Google Scholar]
  30. Van Ness G. B. Ecology of anthrax. Science. 1971 Jun 25;172(3990):1303–1307. doi: 10.1126/science.172.3990.1303. [DOI] [PubMed] [Google Scholar]

Articles from The Canadian Veterinary Journal are provided here courtesy of Canadian Veterinary Medical Association

RESOURCES