Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Nov;63(11):4216–4222. doi: 10.1128/aem.63.11.4216-4222.1997

Biodegradation of the gasoline oxygenates methyl tert-butyl ether, ethyl tert-butyl ether, and tert-amyl methyl ether by propane-oxidizing bacteria.

R J Steffan 1, K McClay 1, S Vainberg 1, C W Condee 1, D Zhang 1
PMCID: PMC168740  PMID: 9361407

Abstract

Several propane-oxidizing bacteria were tested for their ability to degrade gasoline oxygenates, including methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and tert-amyl methyl ether (TAME). Both a laboratory strain and natural isolates were able to degrade each compound after growth on propane. When propane-grown strain ENV425 was incubated with 20 mg of uniformly labeled [14C]MTBE per liter, the strain converted > 60% of the added MTBE to 14CO2 in < 30 h. The initial oxidation of MTBE and ETBE resulted in the production of nearly stoichiometric amounts of tert-butyl alcohol (TBA), while the initial oxidation of TAME resulted in the production of tert-amyl alcohol. The methoxy methyl group of MTBE was oxidized to formaldehyde and ultimately to CO2. TBA was further oxidized to 2-methyl-2-hydroxy-1-propanol and then 2-hydroxy isobutyric acid; however, neither of these degradation products was an effective growth substrate for the propane oxidizers. Analysis of cell extracts of ENV425 and experiments with enzyme inhibitors implicated a soluble P-450 enzyme in the oxidation of both MTBE and TBA. MTBE was oxidized to TBA by camphor-grown Pseudomonas putida CAM, which produces the well-characterized P-450cam, but not by Rhodococcus rhodochrous 116, which produces two P-450 enzymes. Rates of MTBE degradation by propane-oxidizing strains ranged from 3.9 to 9.2 nmol/min/mg of cell protein at 28 degrees C, whereas TBA was oxidized at a rate of only 1.8 to 2.4 nmol/min/mg of cell protein at the same temperature.

Full Text

The Full Text of this article is available as a PDF (173.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brady J. F., Xiao F., Ning S. M., Yang C. S. Metabolism of methyl tertiary-butyl ether by rat hepatic microsomes. Arch Toxicol. 1990;64(2):157–160. doi: 10.1007/BF01974403. [DOI] [PubMed] [Google Scholar]
  2. Guengerich F. P., MacDonald T. L. Mechanisms of cytochrome P-450 catalysis. FASEB J. 1990 May;4(8):2453–2459. doi: 10.1096/fasebj.4.8.2185971. [DOI] [PubMed] [Google Scholar]
  3. Hardison L. K., Curry S. S., Ciuffetti L. M., Hyman M. R. Metabolism of Diethyl Ether and Cometabolism of Methyl tert-Butyl Ether by a Filamentous Fungus, a Graphium sp. Appl Environ Microbiol. 1997 Aug;63(8):3059–3067. doi: 10.1128/aem.63.8.3059-3067.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hareland W. A., Crawford R. L., Chapman P. J., Dagley S. Metabolic function and properties of 4-hydroxyphenylacetic acid 1-hydroxylase from Pseudomonas acidovorans. J Bacteriol. 1975 Jan;121(1):272–285. doi: 10.1128/jb.121.1.272-285.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Karlson U., Dwyer D. F., Hooper S. W., Moore E. R., Timmis K. N., Eltis L. D. Two independently regulated cytochromes P-450 in a Rhodococcus rhodochrous strain that degrades 2-ethoxyphenol and 4-methoxybenzoate. J Bacteriol. 1993 Mar;175(5):1467–1474. doi: 10.1128/jb.175.5.1467-1474.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Marinucci A. C., Bartha R. Apparatus for monitoring the mineralization of volatile C-labeled compounds. Appl Environ Microbiol. 1979 Nov;38(5):1020–1022. doi: 10.1128/aem.38.5.1020-1022.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mo K., Lora C. O., Wanken A. E., Javanmardian M., Yang X., Kulpa C. F. Biodegradation of methyl t-butyl ether by pure bacterial cultures. Appl Microbiol Biotechnol. 1997 Jan;47(1):69–72. doi: 10.1007/s002530050890. [DOI] [PubMed] [Google Scholar]
  8. OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE. J Biol Chem. 1964 Jul;239:2370–2378. [PubMed] [Google Scholar]
  9. Ortiz de Montellano P. R., Mathews J. M. Autocatalytic alkylation of the cytochrome P-450 prosthetic haem group by 1-aminobenzotriazole. Isolation of an NN-bridged benzyne-protoporphyrin IX adduct. Biochem J. 1981 Jun 1;195(3):761–764. doi: 10.1042/bj1950761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Perry J. J. Substrate specificity in hydrocarbon utilizing microorganisms. Antonie Van Leeuwenhoek. 1968;34(1):27–36. doi: 10.1007/BF02046411. [DOI] [PubMed] [Google Scholar]
  11. Salanitro J. P., Diaz L. A., Williams M. P., Wisniewski H. L. Isolation of a Bacterial Culture That Degrades Methyl t-Butyl Ether. Appl Environ Microbiol. 1994 Jul;60(7):2593–2596. doi: 10.1128/aem.60.7.2593-2596.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Unger B. P., Gunsalus I. C., Sligar S. G. Nucleotide sequence of the Pseudomonas putida cytochrome P-450cam gene and its expression in Escherichia coli. J Biol Chem. 1986 Jan 25;261(3):1158–1163. [PubMed] [Google Scholar]
  13. Wackett L. P., Brusseau G. A., Householder S. R., Hanson R. S. Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria. Appl Environ Microbiol. 1989 Nov;55(11):2960–2964. doi: 10.1128/aem.55.11.2960-2964.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Whited G. M., Gibson D. T. Separation and partial characterization of the enzymes of the toluene-4-monooxygenase catabolic pathway in Pseudomonas mendocina KR1. J Bacteriol. 1991 May;173(9):3017–3020. doi: 10.1128/jb.173.9.3017-3020.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES