Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Dec;63(12):4721–4728. doi: 10.1128/aem.63.12.4721-4728.1997

Two cellulases, CelA and CelC, from the polycentric anaerobic fungus Orpinomyces strain PC-2 contain N-terminal docking domains for a cellulase-hemicellulase complex.

X L Li 1, H Chen 1, L G Ljungdahl 1
PMCID: PMC168795  PMID: 9406391

Abstract

Two cDNAs encoding two cellulases, CelA and CelC, were isolated from a cDNA library of the polycentric anaerobic fungus Orpinomyces sp. strain PC-2 constructed in Escherichia coli. Nucleotide sequencing revealed that the celA cDNA (1,558 bp) and celC cDNA (1,628 bp) had open reading frames encoding polypeptides of 459 (CelA) and 449 (CelC) amino acids, respectively. The two cDNAs were 76.9 and 67.7% identical at the nucleotide and amino acid levels, respectively. Analysis of the deduced amino acid sequences showed that starting from the N termini, both CelA and CelC had signal peptides, which were followed by noncatalytic repeated peptide domains (NCRPD) containing two repeated sequences of 33 to 40 amino acid residues functioning as docking domains. The NCRPDs and the catalytic domains were separated by linker sequences. The NCRPDs were homologous to those found in several hydrolases of anaerobic fungi, whereas the catalytic domains were homologous to the catalytic domains of fungal cellobiohydrolases and bacterial endoglucanases. The linker sequence of CelA contained predominantly glutamine and proline residues, while that of CelC contained mainly threonine residues. CelA and CelC did not have a typical cellulose binding domain (CBD). CelA and CelC expressed in E. coli rapidly decreased the viscosity of carboxymethyl cellulose (CMC), indicating that there was endoglucanase activity. In addition, they produced cellobiose from CMC, acid-swollen cellulose, and cellotetraose, suggesting that they had cellobiohydrolase activity. The optimal activity conditions with CMC as the substrate were pH 4.3 to 6.8 and 50 degrees C for CelA and pH 4.6 to 7.0 and 40 degrees C for CelC. Despite the lack of a CBD, CelC displayed a high affinity for microcrystalline cellulose, whereas CelA did not.

Full Text

The Full Text of this article is available as a PDF (355.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ali B. R., Zhou L., Graves F. M., Freedman R. B., Black G. W., Gilbert H. J., Hazelwood G. P. Cellulases and hemicellulases of the anaerobic fungus Piromyces constitute a multiprotein cellulose-binding complex and are encoded by multigene families. FEMS Microbiol Lett. 1995 Jan 1;125(1):15–21. doi: 10.1111/j.1574-6968.1995.tb07329.x. [DOI] [PubMed] [Google Scholar]
  2. Barichievich E. M., Calza R. E. Supernatant protein and cellulase activities of the anaerobic ruminal fungus Neocallimastix frontalis EB188. Appl Environ Microbiol. 1990 Jan;56(1):43–48. doi: 10.1128/aem.56.1.43-48.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bayer E. A., Morag E., Lamed R. The cellulosome--a treasure-trove for biotechnology. Trends Biotechnol. 1994 Sep;12(9):379–386. doi: 10.1016/0167-7799(94)90039-6. [DOI] [PubMed] [Google Scholar]
  4. Black G. W., Hazlewood G. P., Xue G. P., Orpin C. G., Gilbert H. J. Xylanase B from Neocallimastix patriciarum contains a non-catalytic 455-residue linker sequence comprised of 57 repeats of an octapeptide. Biochem J. 1994 Apr 15;299(Pt 2):381–387. doi: 10.1042/bj2990381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Borneman W. S., Akin D. E., Ljungdahl L. G. Fermentation products and plant cell wall-degrading enzymes produced by monocentric and polycentric anaerobic ruminal fungi. Appl Environ Microbiol. 1989 May;55(5):1066–1073. doi: 10.1128/aem.55.5.1066-1073.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Béguin P. Detection of cellulase activity in polyacrylamide gels using Congo red-stained agar replicas. Anal Biochem. 1983 Jun;131(2):333–336. doi: 10.1016/0003-2697(83)90178-1. [DOI] [PubMed] [Google Scholar]
  7. Béguin P. Molecular biology of cellulose degradation. Annu Rev Microbiol. 1990;44:219–248. doi: 10.1146/annurev.mi.44.100190.001251. [DOI] [PubMed] [Google Scholar]
  8. Chen H., Li X. L., Ljungdahl L. G. A cyclophilin from the polycentric anaerobic rumen fungus Orpinomyces sp. strain PC-2 is highly homologous to vertebrate cyclophilin B. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2587–2591. doi: 10.1073/pnas.92.7.2587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Choi S. K., Ljungdahl L. G. Structural role of calcium for the organization of the cellulosome of Clostridium thermocellum. Biochemistry. 1996 Apr 16;35(15):4906–4910. doi: 10.1021/bi9524631. [DOI] [PubMed] [Google Scholar]
  10. Chow C. M., Yagüe E., Raguz S., Wood D. A., Thurston C. F. The cel3 gene of Agaricus bisporus codes for a modular cellulase and is transcriptionally regulated by the carbon source. Appl Environ Microbiol. 1994 Aug;60(8):2779–2785. doi: 10.1128/aem.60.8.2779-2785.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Damude H. G., Gilkes N. R., Kilburn D. G., Miller R. C., Jr, Warren R. A. Endoglucanase CasA from alkalophilic Streptomyces strain KSM-9 is a typical member of family B of beta-1,4-glucanases. Gene. 1993 Jan 15;123(1):105–107. doi: 10.1016/0378-1119(93)90547-g. [DOI] [PubMed] [Google Scholar]
  12. Denman S., Xue G. P., Patel B. Characterization of a Neocallimastix patriciarum cellulase cDNA (celA) homologous to Trichoderma reesei cellobiohydrolase II. Appl Environ Microbiol. 1996 Jun;62(6):1889–1896. doi: 10.1128/aem.62.6.1889-1896.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Doi R. H., Goldstein M., Hashida S., Park J. S., Takagi M. The Clostridium cellulovorans cellulosome. Crit Rev Microbiol. 1994;20(2):87–93. doi: 10.3109/10408419409113548. [DOI] [PubMed] [Google Scholar]
  14. Durand R., Fischer M., Rascle C., Fèvre M. Neocallimastix frontalis enolase gene, enol: first report of an intron in an anaerobic fungus. Microbiology. 1995 Jun;141(Pt 6):1301–1308. doi: 10.1099/13500872-141-6-1301. [DOI] [PubMed] [Google Scholar]
  15. Fanutti C., Ponyi T., Black G. W., Hazlewood G. P., Gilbert H. J. The conserved noncatalytic 40-residue sequence in cellulases and hemicellulases from anaerobic fungi functions as a protein docking domain. J Biol Chem. 1995 Dec 8;270(49):29314–29322. doi: 10.1074/jbc.270.49.29314. [DOI] [PubMed] [Google Scholar]
  16. Felix C. R., Ljungdahl L. G. The cellulosome: the exocellular organelle of Clostridium. Annu Rev Microbiol. 1993;47:791–819. doi: 10.1146/annurev.mi.47.100193.004043. [DOI] [PubMed] [Google Scholar]
  17. Fujino T., Béguin P., Aubert J. P. Organization of a Clostridium thermocellum gene cluster encoding the cellulosomal scaffolding protein CipA and a protein possibly involved in attachment of the cellulosome to the cell surface. J Bacteriol. 1993 Apr;175(7):1891–1899. doi: 10.1128/jb.175.7.1891-1899.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gilbert H. J., Hazlewood G. P., Laurie J. I., Orpin C. G., Xue G. P. Homologous catalytic domains in a rumen fungal xylanase: evidence for gene duplication and prokaryotic origin. Mol Microbiol. 1992 Aug;6(15):2065–2072. doi: 10.1111/j.1365-2958.1992.tb01379.x. [DOI] [PubMed] [Google Scholar]
  19. Gilkes N. R., Henrissat B., Kilburn D. G., Miller R. C., Jr, Warren R. A. Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev. 1991 Jun;55(2):303–315. doi: 10.1128/mr.55.2.303-315.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Henrissat B., Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1993 Aug 1;293(Pt 3):781–788. doi: 10.1042/bj2930781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Henrissat B., Claeyssens M., Tomme P., Lemesle L., Mornon J. P. Cellulase families revealed by hydrophobic cluster analysis. Gene. 1989 Sep 1;81(1):83–95. doi: 10.1016/0378-1119(89)90339-9. [DOI] [PubMed] [Google Scholar]
  22. Kruus K., Lua A. C., Demain A. L., Wu J. H. The anchorage function of CipA (CelL), a scaffolding protein of the Clostridium thermocellum cellulosome. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9254–9258. doi: 10.1073/pnas.92.20.9254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lao G., Ghangas G. S., Jung E. D., Wilson D. B. DNA sequences of three beta-1,4-endoglucanase genes from Thermomonospora fusca. J Bacteriol. 1991 Jun;173(11):3397–3407. doi: 10.1128/jb.173.11.3397-3407.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Li X. L., Calza R. E. Fractionation of cellulases from the ruminal fungus Neocallimastix frontalis EB188. Appl Environ Microbiol. 1991 Nov;57(11):3331–3336. doi: 10.1128/aem.57.11.3331-3336.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Li X. L., Chen H., Ljungdahl L. G. Monocentric and polycentric anaerobic fungi produce structurally related cellulases and xylanases. Appl Environ Microbiol. 1997 Feb;63(2):628–635. doi: 10.1128/aem.63.2.628-635.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Li X. L., Ljungdahl L. G. Expression of Aureobasidium pullulans xynA in, and secretion of the xylanase from, Saccharomyces cerevisiae. Appl Environ Microbiol. 1996 Jan;62(1):209–213. doi: 10.1128/aem.62.1.209-213.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lowe S. E., Theodorou M. K., Trinci A. P. Cellulases and xylanase of an anaerobic rumen fungus grown on wheat straw, wheat straw holocellulose, cellulose, and xylan. Appl Environ Microbiol. 1987 Jun;53(6):1216–1223. doi: 10.1128/aem.53.6.1216-1223.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Millward-Sadler S. J., Hall J., Black G. W., Hazlewood G. P., Gilbert H. J. Evidence that the Piromyces gene family encoding endo-1,4-mannanases arose through gene duplication. FEMS Microbiol Lett. 1996 Aug 1;141(2-3):183–188. doi: 10.1111/j.1574-6968.1996.tb08382.x. [DOI] [PubMed] [Google Scholar]
  29. Orpin C. G. Studies on the rumen flagellate Neocallimastix frontalis. J Gen Microbiol. 1975 Dec;91(2):249–262. doi: 10.1099/00221287-91-2-249. [DOI] [PubMed] [Google Scholar]
  30. Rouvinen J., Bergfors T., Teeri T., Knowles J. K., Jones T. A. Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science. 1990 Jul 27;249(4967):380–386. doi: 10.1126/science.2377893. [DOI] [PubMed] [Google Scholar]
  31. Sheppard P. O., Grant F. J., Oort P. J., Sprecher C. A., Foster D. C., Hagen F. S., Upshall A., McKnight G. L., O'Hara P. J. The use of conserved cellulase family-specific sequences to clone cellulase homologue cDNAs from Fusarium oxysporum. Gene. 1994 Dec 2;150(1):163–167. doi: 10.1016/0378-1119(94)90878-8. [DOI] [PubMed] [Google Scholar]
  32. Spezio M., Wilson D. B., Karplus P. A. Crystal structure of the catalytic domain of a thermophilic endocellulase. Biochemistry. 1993 Sep 28;32(38):9906–9916. doi: 10.1021/bi00089a006. [DOI] [PubMed] [Google Scholar]
  33. Teeri T. T., Lehtovaara P., Kauppinen S., Salovuori I., Knowles J. Homologous domains in Trichoderma reesei cellulolytic enzymes: gene sequence and expression of cellobiohydrolase II. Gene. 1987;51(1):43–52. doi: 10.1016/0378-1119(87)90472-0. [DOI] [PubMed] [Google Scholar]
  34. Warren R. A. Microbial hydrolysis of polysaccharides. Annu Rev Microbiol. 1996;50:183–212. doi: 10.1146/annurev.micro.50.1.183. [DOI] [PubMed] [Google Scholar]
  35. Wong W. K., Gerhard B., Guo Z. M., Kilburn D. G., Warren A. J., Miller R. C., Jr Characterization and structure of an endoglucanase gene cenA of Cellulomonas fimi. Gene. 1986;44(2-3):315–324. doi: 10.1016/0378-1119(86)90196-4. [DOI] [PubMed] [Google Scholar]
  36. Zhou L., Xue G. P., Orpin C. G., Black G. W., Gilbert H. J., Hazlewood G. P. Intronless celB from the anaerobic fungus Neocallimastix patriciarum encodes a modular family A endoglucanase. Biochem J. 1994 Jan 15;297(Pt 2):359–364. doi: 10.1042/bj2970359. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES