Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1997 Sep 22;264(1386):1395–1402. doi: 10.1098/rspb.1997.0194

Detecting natural changes of cone-excitation ratios in simple and complex coloured images.

S M Nascimento 1, D H Foster 1
PMCID: PMC1688591  PMID: 9332018

Abstract

Ratios of excitations in each cone-photoreceptor class produced by light reflected from pairs of surfaces in a scene are almost invariant under natural illuminant changes. The stability of these spatially defined ratios may explain the remarkable ability of human observers to efficiently discriminate illuminant changes from changes in surface reflectances. Spatial cone-excitation ratios are not, however, exactly invariant. This study is concerned with observers' sensitivity to these invariance violations. Simulations of Mondrian paintings with either 49 or two natural surfaces under Planckian illuminants were presented as images on a computer-controlled display in a two-interval experimental design: in one interval, the surfaces underwent an illuminant change; in the other interval, the surfaces underwent the same change but the images were then corrected so that, for each cone class, ratios of excitations were preserved exactly. Although the intervals with corrected images corresponded individually to highly improbable natural events, observers systematically misidentified them as containing the illuminant changes, the probability of error increasing as the violation of invariance in the other interval increased. For the range of illuminants and surfaces tested, sensitivity to violations of invariance was found to depend on cone class: it was greatest for long-wavelength-sensitive cones and least for short-wavelength-sensitive cones. Spatial cone-excitation ratios, or some closely related quantities, seem to be the cues preferred by observers for making inferences about surface illuminant changes.

Full Text

The Full Text of this article is available as a PDF (438.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arend L., Reeves A. Simultaneous color constancy. J Opt Soc Am A. 1986 Oct;3(10):1743–1751. doi: 10.1364/josaa.3.001743. [DOI] [PubMed] [Google Scholar]
  2. Barlow H. B. What causes trichromacy? A theoretical analysis using comb-filtered spectra. Vision Res. 1982;22(6):635–643. doi: 10.1016/0042-6989(82)90099-2. [DOI] [PubMed] [Google Scholar]
  3. Blackwell K. T., Buchsbaum G. Quantitative studies of color constancy. J Opt Soc Am A. 1988 Oct;5(10):1772–1780. doi: 10.1364/josaa.5.001772. [DOI] [PubMed] [Google Scholar]
  4. Brainard D. H., Wandell B. A. Analysis of the retinex theory of color vision. J Opt Soc Am A. 1986 Oct;3(10):1651–1661. doi: 10.1364/josaa.3.001651. [DOI] [PubMed] [Google Scholar]
  5. Brainard D. H., Wandell B. A. Asymmetric color matching: how color appearance depends on the illuminant. J Opt Soc Am A. 1992 Sep;9(9):1433–1448. doi: 10.1364/josaa.9.001433. [DOI] [PubMed] [Google Scholar]
  6. Brill M. H. A device performing illuminant-invariant assessment of chromatic relations. J Theor Biol. 1978 Apr 6;71(3):473–478. doi: 10.1016/0022-5193(78)90175-3. [DOI] [PubMed] [Google Scholar]
  7. Buchsbaum G., Gottschalk A. Chromaticity coordinates of frequency-limited functions. J Opt Soc Am A. 1984 Aug;1(8):885–887. doi: 10.1364/josaa.1.000885. [DOI] [PubMed] [Google Scholar]
  8. Chichilnisky E. J., Wandell B. A. Photoreceptor sensitivity changes explain color appearance shifts induced by large uniform backgrounds in dichoptic matching. Vision Res. 1995 Jan;35(2):239–254. doi: 10.1016/0042-6989(94)00122-3. [DOI] [PubMed] [Google Scholar]
  9. Cornelissen F. W., Brenner E. Simultaneous colour constancy revisited: an analysis of viewing strategies. Vision Res. 1995 Sep;35(17):2431–2448. [PubMed] [Google Scholar]
  10. Craven B. J., Foster D. H. An operational approach to colour constancy. Vision Res. 1992 Jul;32(7):1359–1366. doi: 10.1016/0042-6989(92)90228-b. [DOI] [PubMed] [Google Scholar]
  11. D'Zmura M., Iverson G. Color constancy. III. General linear recovery of spectral descriptions for lights and surfaces. J Opt Soc Am A Opt Image Sci Vis. 1994 Sep;11(9):2398–2400. doi: 10.1364/josaa.11.002389. [DOI] [PubMed] [Google Scholar]
  12. Finlayson G. D., Drew M. S., Funt B. V. Spectral sharpening: sensor transformations for improved color constancy. J Opt Soc Am A Opt Image Sci Vis. 1994 May;11(5):1553–1563. doi: 10.1364/josaa.11.001553. [DOI] [PubMed] [Google Scholar]
  13. Foster D. H. Changes in field spectral sensitivities of red-, green- and blue-sensitive colour mechanisms obtained on small background fields. Vision Res. 1981;21(10):1433–1455. doi: 10.1016/0042-6989(81)90215-7. [DOI] [PubMed] [Google Scholar]
  14. Foster D. H., Craven B. J., Sale E. R. Immediate colour constancy. Ophthalmic Physiol Opt. 1992 Apr;12(2):157–160. doi: 10.1111/j.1475-1313.1992.tb00280.x. [DOI] [PubMed] [Google Scholar]
  15. Foster D. H., Nascimento S. M., Craven B. J., Linnell K. J., Cornelissen F. W., Brenner E. Four issues concerning colour constancy and relational colour constancy. Vision Res. 1997 May;37(10):1341–1345. doi: 10.1016/s0042-6989(96)00285-4. [DOI] [PubMed] [Google Scholar]
  16. Foster D. H., Nascimento S. M. Relational colour constancy from invariant cone-excitation ratios. Proc Biol Sci. 1994 Aug 22;257(1349):115–121. doi: 10.1098/rspb.1994.0103. [DOI] [PubMed] [Google Scholar]
  17. Foster D. H., Snelgar R. S. Test and field spectral sensitivities of colour mechanisms obtained on small white backgrounds: action of unitary opponent-colour processes? Vision Res. 1983;23(8):787–797. doi: 10.1016/0042-6989(83)90201-8. [DOI] [PubMed] [Google Scholar]
  18. Hurlbert A. Formal connections between lightness algorithms. J Opt Soc Am A. 1986 Oct;3(10):1684–1693. doi: 10.1364/josaa.3.001684. [DOI] [PubMed] [Google Scholar]
  19. Ingling C. R., Jr, Huong-Peng-Tsou B. Orthogonal combination of the three visual channels. Vision Res. 1977;17(9):1075–1082. doi: 10.1016/0042-6989(77)90013-x. [DOI] [PubMed] [Google Scholar]
  20. King-Smith P. E., Carden D. Luminance and opponent-color contributions to visual detection and adaptation and to temporal and spatial integration. J Opt Soc Am. 1976 Jul;66(7):709–717. doi: 10.1364/josa.66.000709. [DOI] [PubMed] [Google Scholar]
  21. Land E. H. COLOR VISION AND THE NATURAL IMAGE PART II. Proc Natl Acad Sci U S A. 1959 Apr;45(4):636–644. doi: 10.1073/pnas.45.4.636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Land E. H., McCann J. J. Lightness and retinex theory. J Opt Soc Am. 1971 Jan;61(1):1–11. doi: 10.1364/josa.61.000001. [DOI] [PubMed] [Google Scholar]
  23. Land E. H. Recent advances in retinex theory and some implications for cortical computations: color vision and the natural image. Proc Natl Acad Sci U S A. 1983 Aug;80(16):5163–5169. doi: 10.1073/pnas.80.16.5163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lucassen M. P., Walraven J. Color constancy under natural and artificial illumination. Vision Res. 1996 Sep;36(17):2699–2711. doi: 10.1016/0042-6989(95)00346-0. [DOI] [PubMed] [Google Scholar]
  25. Maloney L. T. Evaluation of linear models of surface spectral reflectance with small numbers of parameters. J Opt Soc Am A. 1986 Oct;3(10):1673–1683. doi: 10.1364/josaa.3.001673. [DOI] [PubMed] [Google Scholar]
  26. Maloney L. T., Wandell B. A. Color constancy: a method for recovering surface spectral reflectance. J Opt Soc Am A. 1986 Jan;3(1):29–33. doi: 10.1364/josaa.3.000029. [DOI] [PubMed] [Google Scholar]
  27. Reinhardt-Rutland A. H. Depth judgments of triangular surfaces during moving monocular viewing. Perception. 1996;25(1):27–35. doi: 10.1068/p250027. [DOI] [PubMed] [Google Scholar]
  28. Smith V. C., Pokorny J. Spectral sensitivity of color-blind observers and the cone photopigments. Vision Res. 1972 Dec;12(12):2059–2071. doi: 10.1016/0042-6989(72)90058-2. [DOI] [PubMed] [Google Scholar]
  29. Smith V. C., Pokorny J. Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm. Vision Res. 1975 Feb;15(2):161–171. doi: 10.1016/0042-6989(75)90203-5. [DOI] [PubMed] [Google Scholar]
  30. Sperling H. G., Harwerth R. S. Red-green cone interactions in the increment-threshold spectral sensitivity of primates. Science. 1971 Apr 9;172(3979):180–184. doi: 10.1126/science.172.3979.180. [DOI] [PubMed] [Google Scholar]
  31. Valberg A., Lange-Malecki B. "Colour constancy" in Mondrian patterns: a partial cancellation of physical chromaticity shifts by simultaneous contrast. Vision Res. 1990;30(3):371–380. doi: 10.1016/0042-6989(90)90079-z. [DOI] [PubMed] [Google Scholar]
  32. Vos J. J., Estévez O., Walraven P. L. Improved color fundamentals offer a new view on photometric additivity. Vision Res. 1990;30(6):937–943. doi: 10.1016/0042-6989(90)90059-t. [DOI] [PubMed] [Google Scholar]
  33. West G., Brill M. H. Necessary and sufficient conditions for Von Kries chromatic adaptation to give color constancy. J Math Biol. 1982;15(2):249–258. doi: 10.1007/BF00275077. [DOI] [PubMed] [Google Scholar]
  34. Worthey J. A., Brill M. H. Heuristic analysis of von Kries color constancy. J Opt Soc Am A. 1986 Oct;3(10):1708–1712. doi: 10.1364/josaa.3.001708. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES