Abstract
The primary visual cortex (V1) is the first cortical area to receive visual input, and inferior temporal (IT) areas are among the last along the ventral visual pathway. We recorded, in area V1 of anaesthetized cats and area IT of awake macaque monkeys, responses of neurons to videos of natural scenes. Responses were analysed to test various hypotheses concerning the nature of neural coding in these two regions. A variety of spike-train statistics were measured including spike-count distributions, interspike interval distributions, coefficients of variation, power spectra, Fano factors and different sparseness measures. All statistics showed non-Poisson characteristics and several revealed self-similarity of the spike trains. Spike-count distributions were approximately exponential in both visual areas for eight different videos and for counting windows ranging from 50 ms to 5 seconds. The results suggest that the neurons maximize their information carrying capacity while maintaining a fixed long-term-average firing rate, or equivalently, minimize their average firing rate for a fixed information carrying capacity.
Full Text
The Full Text of this article is available as a PDF (303.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baddeley R. J., Hancock P. J. A statistical analysis of natural images matches psychophysically derived orientation tuning curves. Proc Biol Sci. 1991 Dec 23;246(1317):219–223. doi: 10.1098/rspb.1991.0147. [DOI] [PubMed] [Google Scholar]
- Baddeley R. Visual perception. An efficient code in V1? Nature. 1996 Jun 13;381(6583):560–561. doi: 10.1038/381560a0. [DOI] [PubMed] [Google Scholar]
- Bair W., Koch C., Newsome W., Britten K. Power spectrum analysis of bursting cells in area MT in the behaving monkey. J Neurosci. 1994 May;14(5 Pt 1):2870–2892. doi: 10.1523/JNEUROSCI.14-05-02870.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dan Y., Atick J. J., Reid R. C. Efficient coding of natural scenes in the lateral geniculate nucleus: experimental test of a computational theory. J Neurosci. 1996 May 15;16(10):3351–3362. doi: 10.1523/JNEUROSCI.16-10-03351.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deweese M. Optimization principles for the neural code. Network. 1996 May;7(2):325–331. doi: 10.1088/0954-898X/7/2/013. [DOI] [PubMed] [Google Scholar]
- Diamond J. M. Competition for brain space. Nature. 1996 Aug 29;382(6594):756–757. doi: 10.1038/382756a0. [DOI] [PubMed] [Google Scholar]
- Harpur G. F., Prager R. W. Development of low entropy coding in a recurrent network. Network. 1996 May;7(2):277–284. doi: 10.1088/0954-898X/7/2/007. [DOI] [PubMed] [Google Scholar]
- Holt G. R., Softky W. R., Koch C., Douglas R. J. Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. J Neurophysiol. 1996 May;75(5):1806–1814. doi: 10.1152/jn.1996.75.5.1806. [DOI] [PubMed] [Google Scholar]
- Laughlin S. A simple coding procedure enhances a neuron's information capacity. Z Naturforsch C. 1981 Sep-Oct;36(9-10):910–912. [PubMed] [Google Scholar]
- Legéndy C. R., Salcman M. Bursts and recurrences of bursts in the spike trains of spontaneously active striate cortex neurons. J Neurophysiol. 1985 Apr;53(4):926–939. doi: 10.1152/jn.1985.53.4.926. [DOI] [PubMed] [Google Scholar]
- Levy W. B., Baxter R. A. Energy efficient neural codes. Neural Comput. 1996 Apr 1;8(3):531–543. doi: 10.1162/neco.1996.8.3.531. [DOI] [PubMed] [Google Scholar]
- Olshausen B. A., Field D. J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature. 1996 Jun 13;381(6583):607–609. doi: 10.1038/381607a0. [DOI] [PubMed] [Google Scholar]
- Rolls E. T., Tovee M. J. Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. J Neurophysiol. 1995 Feb;73(2):713–726. doi: 10.1152/jn.1995.73.2.713. [DOI] [PubMed] [Google Scholar]
- Sengpiel F., Blakemore C., Kind P. C., Harrad R. Interocular suppression in the visual cortex of strabismic cats. J Neurosci. 1994 Nov;14(11 Pt 2):6855–6871. doi: 10.1523/JNEUROSCI.14-11-06855.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Softky W. R., Koch C. The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J Neurosci. 1993 Jan;13(1):334–350. doi: 10.1523/JNEUROSCI.13-01-00334.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Srinivasan M. V., Laughlin S. B., Dubs A. Predictive coding: a fresh view of inhibition in the retina. Proc R Soc Lond B Biol Sci. 1982 Nov 22;216(1205):427–459. doi: 10.1098/rspb.1982.0085. [DOI] [PubMed] [Google Scholar]
- Teich M. C. Fractal character of the auditory neural spike train. IEEE Trans Biomed Eng. 1989 Jan;36(1):150–160. doi: 10.1109/10.16460. [DOI] [PubMed] [Google Scholar]
- Teich M. C., Heneghan C., Lowen S. B., Ozaki T., Kaplan E. Fractal character of the neural spike train in the visual system of the cat. J Opt Soc Am A Opt Image Sci Vis. 1997 Mar;14(3):529–546. doi: 10.1364/josaa.14.000529. [DOI] [PubMed] [Google Scholar]
- Van Hateren J. H. Spatiotemporal contrast sensitivity of early vision. Vision Res. 1993 Jan;33(2):257–267. doi: 10.1016/0042-6989(93)90163-q. [DOI] [PubMed] [Google Scholar]
- Watt R. J. Scanning from coarse to fine spatial scales in the human visual system after the onset of a stimulus. J Opt Soc Am A. 1987 Oct;4(10):2006–2021. doi: 10.1364/josaa.4.002006. [DOI] [PubMed] [Google Scholar]
- van Hateren J. H. Real and optimal neural images in early vision. Nature. 1992 Nov 5;360(6399):68–70. doi: 10.1038/360068a0. [DOI] [PubMed] [Google Scholar]