Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1998 Mar 7;265(1394):359–366. doi: 10.1098/rspb.1998.0303

Independent component filters of natural images compared with simple cells in primary visual cortex.

J H van Hateren 1, A van der Schaaf 1
PMCID: PMC1688904  PMID: 9523437

Abstract

Properties of the receptive fields of simple cells in macaque cortex were compared with properties of independent component filters generated by independent component analysis (ICA) on a large set of natural images. Histograms of spatial frequency bandwidth, orientation tuning bandwidth, aspect ratio and length of the receptive fields match well. This indicates that simple cells are well tuned to the expected statistics of natural stimuli. There is no match, however, in calculated and measured distributions for the peak of the spatial frequency response: the filters produced by ICA do not vary their spatial scale as much as simple cells do, but are fixed to scales close to the finest ones allowed by the sampling lattice. Possible ways to resolve this discrepancy are discussed.

Full Text

The Full Text of this article is available as a PDF (346.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baddeley R. Searching for filters with 'interesting' output distributions: an uninteresting direction to explore? Network. 1996 May;7(2):409–421. doi: 10.1088/0954-898X/7/2/021. [DOI] [PubMed] [Google Scholar]
  2. Barlow H. B. Single units and sensation: a neuron doctrine for perceptual psychology? Perception. 1972;1(4):371–394. doi: 10.1068/p010371. [DOI] [PubMed] [Google Scholar]
  3. Bell A. J., Sejnowski T. J. The "independent components" of natural scenes are edge filters. Vision Res. 1997 Dec;37(23):3327–3338. doi: 10.1016/s0042-6989(97)00121-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dan Y., Atick J. J., Reid R. C. Efficient coding of natural scenes in the lateral geniculate nucleus: experimental test of a computational theory. J Neurosci. 1996 May 15;16(10):3351–3362. doi: 10.1523/JNEUROSCI.16-10-03351.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Daugman J. G. Two-dimensional spectral analysis of cortical receptive field profiles. Vision Res. 1980;20(10):847–856. doi: 10.1016/0042-6989(80)90065-6. [DOI] [PubMed] [Google Scholar]
  6. De Valois R. L., Albrecht D. G., Thorell L. G. Spatial frequency selectivity of cells in macaque visual cortex. Vision Res. 1982;22(5):545–559. doi: 10.1016/0042-6989(82)90113-4. [DOI] [PubMed] [Google Scholar]
  7. De Valois R. L., Yund E. W., Hepler N. The orientation and direction selectivity of cells in macaque visual cortex. Vision Res. 1982;22(5):531–544. doi: 10.1016/0042-6989(82)90112-2. [DOI] [PubMed] [Google Scholar]
  8. DeAngelis G. C., Ohzawa I., Freeman R. D. Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. I. General characteristics and postnatal development. J Neurophysiol. 1993 Apr;69(4):1091–1117. doi: 10.1152/jn.1993.69.4.1091. [DOI] [PubMed] [Google Scholar]
  9. Field D. J. Relations between the statistics of natural images and the response properties of cortical cells. J Opt Soc Am A. 1987 Dec;4(12):2379–2394. doi: 10.1364/josaa.4.002379. [DOI] [PubMed] [Google Scholar]
  10. Field D. J., Tolhurst D. J. The structure and symmetry of simple-cell receptive-field profiles in the cat's visual cortex. Proc R Soc Lond B Biol Sci. 1986 Sep 22;228(1253):379–400. doi: 10.1098/rspb.1986.0060. [DOI] [PubMed] [Google Scholar]
  11. Heeger D. J. Normalization of cell responses in cat striate cortex. Vis Neurosci. 1992 Aug;9(2):181–197. doi: 10.1017/s0952523800009640. [DOI] [PubMed] [Google Scholar]
  12. Hubel D. H., Wiesel T. N. Receptive fields and functional architecture of monkey striate cortex. J Physiol. 1968 Mar;195(1):215–243. doi: 10.1113/jphysiol.1968.sp008455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Koenderink J. J. The structure of images. Biol Cybern. 1984;50(5):363–370. doi: 10.1007/BF00336961. [DOI] [PubMed] [Google Scholar]
  14. Laughlin S. A simple coding procedure enhances a neuron's information capacity. Z Naturforsch C. 1981 Sep-Oct;36(9-10):910–912. [PubMed] [Google Scholar]
  15. Marcelja S. Mathematical description of the responses of simple cortical cells. J Opt Soc Am. 1980 Nov;70(11):1297–1300. doi: 10.1364/josa.70.001297. [DOI] [PubMed] [Google Scholar]
  16. Olshausen B. A., Field D. J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature. 1996 Jun 13;381(6583):607–609. doi: 10.1038/381607a0. [DOI] [PubMed] [Google Scholar]
  17. Olshausen B. A., Field D. J. Sparse coding with an overcomplete basis set: a strategy employed by V1? Vision Res. 1997 Dec;37(23):3311–3325. doi: 10.1016/s0042-6989(97)00169-7. [DOI] [PubMed] [Google Scholar]
  18. Parker A. J., Hawken M. J. Two-dimensional spatial structure of receptive fields in monkey striate cortex. J Opt Soc Am A. 1988 Apr;5(4):598–605. doi: 10.1364/josaa.5.000598. [DOI] [PubMed] [Google Scholar]
  19. Ruderman DL, Bialek W. Statistics of natural images: Scaling in the woods. Phys Rev Lett. 1994 Aug 8;73(6):814–817. doi: 10.1103/PhysRevLett.73.814. [DOI] [PubMed] [Google Scholar]
  20. Sclar G., Lennie P., DePriest D. D. Contrast adaptation in striate cortex of macaque. Vision Res. 1989;29(7):747–755. doi: 10.1016/0042-6989(89)90087-4. [DOI] [PubMed] [Google Scholar]
  21. Srinivasan M. V., Laughlin S. B., Dubs A. Predictive coding: a fresh view of inhibition in the retina. Proc R Soc Lond B Biol Sci. 1982 Nov 22;216(1205):427–459. doi: 10.1098/rspb.1982.0085. [DOI] [PubMed] [Google Scholar]
  22. Volgushev M., Vidyasagar T. R., Pei X. A linear model fails to predict orientation selectivity of cells in the cat visual cortex. J Physiol. 1996 Nov 1;496(Pt 3):597–606. doi: 10.1113/jphysiol.1996.sp021711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Zipser K., Lamme V. A., Schiller P. H. Contextual modulation in primary visual cortex. J Neurosci. 1996 Nov 15;16(22):7376–7389. doi: 10.1523/JNEUROSCI.16-22-07376.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. van Hateren J. H. Processing of natural time series of intensities by the visual system of the blowfly. Vision Res. 1997 Dec;37(23):3407–3416. doi: 10.1016/s0042-6989(97)00105-3. [DOI] [PubMed] [Google Scholar]
  25. van Hateren J. H. Real and optimal neural images in early vision. Nature. 1992 Nov 5;360(6399):68–70. doi: 10.1038/360068a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES