Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1998 Dec 22;265(1413):2393–2397. doi: 10.1098/rspb.1998.0589

Genetic conflicts in genomic imprinting.

A Burt 1, R Trivers 1
PMCID: PMC1689541  PMID: 10075542

Abstract

The expression pattern of genes in mammals and plants can depend upon the parent from which the gene was inherited, evidence for a mechanism of parent-specific genomic imprinting. Kinship considerations are likely to be important in the natural selection of many such genes, because coefficients of relatedness will usually differ between maternally and paternally derived genes. Three classes of gene are likely to be involved in genomic imprinting: the imprinted genes themselves, trans-acting genes in the parents, which affect the application of the imprint, and trnas-acting genes in the offspring, which recognize and affect the expression of the imprint. We show that coefficients of relatedness will typically differ among these three classes, thus engendering conflicts of interest between Imprinter genes, imprinted genes, and imprint-recognition genes, with probable consequences for the evolution of the imprinting machinery.

Full Text

The Full Text of this article is available as a PDF (121.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ariel M., Robinson E., McCarrey J. R., Cedar H. Gamete-specific methylation correlates with imprinting of the murine Xist gene. Nat Genet. 1995 Mar;9(3):312–315. doi: 10.1038/ng0395-312. [DOI] [PubMed] [Google Scholar]
  2. Barlow D. P. Gametic imprinting in mammals. Science. 1995 Dec 8;270(5242):1610–1613. doi: 10.1126/science.270.5242.1610. [DOI] [PubMed] [Google Scholar]
  3. Buiting K., Saitoh S., Gross S., Dittrich B., Schwartz S., Nicholls R. D., Horsthemke B. Inherited microdeletions in the Angelman and Prader-Willi syndromes define an imprinting centre on human chromosome 15. Nat Genet. 1995 Apr;9(4):395–400. doi: 10.1038/ng0495-395. [DOI] [PubMed] [Google Scholar]
  4. Chaillet J. R., Bader D. S., Leder P. Regulation of genomic imprinting by gametic and embryonic processes. Genes Dev. 1995 May 15;9(10):1177–1187. doi: 10.1101/gad.9.10.1177. [DOI] [PubMed] [Google Scholar]
  5. Charlesworth B., Charnov E. L. Kin selection in age-structured populations. J Theor Biol. 1981 Jan 7;88(1):103–119. doi: 10.1016/0022-5193(81)90330-1. [DOI] [PubMed] [Google Scholar]
  6. Dittrich B., Buiting K., Korn B., Rickard S., Buxton J., Saitoh S., Nicholls R. D., Poustka A., Winterpacht A., Zabel B. Imprint switching on human chromosome 15 may involve alternative transcripts of the SNRPN gene. Nat Genet. 1996 Oct;14(2):163–170. doi: 10.1038/ng1096-163. [DOI] [PubMed] [Google Scholar]
  7. Efstratiadis A. Parental imprinting of autosomal mammalian genes. Curr Opin Genet Dev. 1994 Apr;4(2):265–280. doi: 10.1016/s0959-437x(05)80054-1. [DOI] [PubMed] [Google Scholar]
  8. Haig D. Parental antagonism, relatedness asymmetries, and genomic imprinting. Proc Biol Sci. 1997 Nov 22;264(1388):1657–1662. doi: 10.1098/rspb.1997.0230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hamilton W. D. The genetical evolution of social behaviour. I. J Theor Biol. 1964 Jul;7(1):1–16. doi: 10.1016/0022-5193(64)90038-4. [DOI] [PubMed] [Google Scholar]
  10. Hamilton W. D. The genetical evolution of social behaviour. II. J Theor Biol. 1964 Jul;7(1):17–52. doi: 10.1016/0022-5193(64)90039-6. [DOI] [PubMed] [Google Scholar]
  11. Hamilton W. D. The moulding of senescence by natural selection. J Theor Biol. 1966 Sep;12(1):12–45. doi: 10.1016/0022-5193(66)90184-6. [DOI] [PubMed] [Google Scholar]
  12. Latham K. E., Sapienza C. Localization of genes encoding egg modifiers of paternal genome function to mouse chromosomes one and two. Development. 1998 Mar;125(5):929–935. doi: 10.1242/dev.125.5.929. [DOI] [PubMed] [Google Scholar]
  13. Mochizuki A., Takeda Y., Iwasa Y. The evolution of genomic imprinting. Genetics. 1996 Nov;144(3):1283–1295. doi: 10.1093/genetics/144.3.1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Moore T., Haig D. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet. 1991 Feb;7(2):45–49. doi: 10.1016/0168-9525(91)90230-N. [DOI] [PubMed] [Google Scholar]
  15. Moore T., Reik W. Genetic conflict in early development: parental imprinting in normal and abnormal growth. Rev Reprod. 1996 May;1(2):73–77. doi: 10.1530/ror.0.0010073. [DOI] [PubMed] [Google Scholar]
  16. Norris D. P., Patel D., Kay G. F., Penny G. D., Brockdorff N., Sheardown S. A., Rastan S. Evidence that random and imprinted Xist expression is controlled by preemptive methylation. Cell. 1994 Apr 8;77(1):41–51. doi: 10.1016/0092-8674(94)90233-x. [DOI] [PubMed] [Google Scholar]
  17. Razin A., Shemer R. DNA methylation in early development. Hum Mol Genet. 1995;4(Spec No):1751–1755. doi: 10.1093/hmg/4.suppl_1.1751. [DOI] [PubMed] [Google Scholar]
  18. Reik W., Maher E. R. Imprinting in clusters: lessons from Beckwith-Wiedemann syndrome. Trends Genet. 1997 Aug;13(8):330–334. doi: 10.1016/s0168-9525(97)01200-6. [DOI] [PubMed] [Google Scholar]
  19. Shemer R., Birger Y., Dean W. L., Reik W., Riggs A. D., Razin A. Dynamic methylation adjustment and counting as part of imprinting mechanisms. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6371–6376. doi: 10.1073/pnas.93.13.6371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Spencer H. G., Feldman M. W., Clark A. G. Genetic conflicts, multiple paternity and the evolution of genomic imprinting. Genetics. 1998 Feb;148(2):893–904. doi: 10.1093/genetics/148.2.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Spencer H. G., Williams M. J. The evolution of genomic imprinting: two modifier-locus models. Theor Popul Biol. 1997 Feb;51(1):23–35. doi: 10.1006/tpbi.1997.1293. [DOI] [PubMed] [Google Scholar]
  22. Vu T. H., Hoffman A. R. Promoter-specific imprinting of the human insulin-like growth factor-II gene. Nature. 1994 Oct 20;371(6499):714–717. doi: 10.1038/371714a0. [DOI] [PubMed] [Google Scholar]
  23. Webber A. L., Ingram R. S., Levorse J. M., Tilghman S. M. Location of enhancers is essential for the imprinting of H19 and Igf2 genes. Nature. 1998 Feb 12;391(6668):711–715. doi: 10.1038/35655. [DOI] [PubMed] [Google Scholar]
  24. Zuccotti M., Monk M. Methylation of the mouse Xist gene in sperm and eggs correlates with imprinted Xist expression and paternal X-inactivation. Nat Genet. 1995 Mar;9(3):316–320. doi: 10.1038/ng0395-316. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES