Abstract
Unexpectedly low levels of mitochondrial DNA (mtDNA) cytochrome b sequence divergence are found between species of the scleractinian coral genus Acropora. Comparison of 964 positions of the cytochrome b gene of two out of the three Caribbean Acropora species with seven of their Pacific congeners shows only 0.3-0.8% sequence difference. Species in these biogeographic regions have been evolving independently for at least three million years (since the rise of the Isthmus of Panama) and this geological date is used to estimate nucleotide divergence rates. The results indicate that the Acropora cytochrome b gene is evolving at least 10-20 times slower than the 'standard' vertebrate mtDNA clock and is one of the most slowly evolving animal mitochondrial genes described to date. The possibility is discussed that, unlike higher animals, cnidarians may have a functional mtDNA mismatch repair system.
Full Text
The Full Text of this article is available as a PDF (128.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Avise J. C., Bowen B. W., Lamb T., Meylan A. B., Bermingham E. Mitochondrial DNA evolution at a turtle's pace: evidence for low genetic variability and reduced microevolutionary rate in the Testudines. Mol Biol Evol. 1992 May;9(3):457–473. doi: 10.1093/oxfordjournals.molbev.a040735. [DOI] [PubMed] [Google Scholar]
- Bargelloni L., Ritchie P. A., Patarnello T., Battaglia B., Lambert D. M., Meyer A. Molecular evolution at subzero temperatures: mitochondrial and nuclear phylogenies of fishes from Antarctica (suborder Notothenioidei), and the evolution of antifreeze glycopeptides. Mol Biol Evol. 1994 Nov;11(6):854–863. doi: 10.1093/oxfordjournals.molbev.a040168. [DOI] [PubMed] [Google Scholar]
- Bowen B. W., Nelson W. S., Avise J. C. A molecular phylogeny for marine turtles: trait mapping, rate assessment, and conservation relevance. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5574–5577. doi: 10.1073/pnas.90.12.5574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown W. M., George M., Jr, Wilson A. C. Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1967–1971. doi: 10.1073/pnas.76.4.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown W. M., Prager E. M., Wang A., Wilson A. C. Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol. 1982;18(4):225–239. doi: 10.1007/BF01734101. [DOI] [PubMed] [Google Scholar]
- Cantatore P., Roberti M., Pesole G., Ludovico A., Milella F., Gadaleta M. N., Saccone C. Evolutionary analysis of cytochrome b sequences in some Perciformes: evidence for a slower rate of evolution than in mammals. J Mol Evol. 1994 Dec;39(6):589–597. doi: 10.1007/BF00160404. [DOI] [PubMed] [Google Scholar]
- Clark-Walker G. D. Contrasting mutation rates in mitochondrial and nuclear genes of yeasts versus mammals. Curr Genet. 1991 Aug;20(3):195–198. doi: 10.1007/BF00326232. [DOI] [PubMed] [Google Scholar]
- Harrison P. L., Babcock R. C., Bull G. D., Oliver J. K., Wallace C. C., Willis B. L. Mass spawning in tropical reef corals. Science. 1984 Mar 16;223(4641):1186–1189. doi: 10.1126/science.223.4641.1186. [DOI] [PubMed] [Google Scholar]
- Keigwin L. Isotopic paleoceanography of the Caribbean and East pacific: role of panama uplift in late neogene time. Science. 1982 Jul 23;217(4557):350–353. doi: 10.1126/science.217.4557.350. [DOI] [PubMed] [Google Scholar]
- Knowlton N., Weigt L. A., Solórzano L. A., Mills D. K., Bermingham E. Divergence in proteins, mitochondrial DNA, and reproductive compatibility across the isthmus of Panama. Science. 1993 Jun 11;260(5114):1629–1632. doi: 10.1126/science.8503007. [DOI] [PubMed] [Google Scholar]
- Kocher T. D., Thomas W. K., Meyer A., Edwards S. V., Päbo S., Villablanca F. X., Wilson A. C. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6196–6200. doi: 10.1073/pnas.86.16.6196. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Larson A., Wilson A. C. Patterns of ribosomal RNA evolution in salamanders. Mol Biol Evol. 1989 Mar;6(2):131–154. doi: 10.1093/oxfordjournals.molbev.a040539. [DOI] [PubMed] [Google Scholar]
- Li W. H., Tanimura M., Sharp P. M. An evaluation of the molecular clock hypothesis using mammalian DNA sequences. J Mol Evol. 1987;25(4):330–342. doi: 10.1007/BF02603118. [DOI] [PubMed] [Google Scholar]
- Lynch M., Jarrell P. E. A method for calibrating molecular clocks and its application to animal mitochondrial DNA. Genetics. 1993 Dec;135(4):1197–1208. doi: 10.1093/genetics/135.4.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin A. P., Naylor G. J., Palumbi S. R. Rates of mitochondrial DNA evolution in sharks are slow compared with mammals. Nature. 1992 May 14;357(6374):153–155. doi: 10.1038/357153a0. [DOI] [PubMed] [Google Scholar]
- Martin A. P., Palumbi S. R. Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4087–4091. doi: 10.1073/pnas.90.9.4087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McKnight M. L., Shaffer H. B. Large, rapidly evolving intergenic spacers in the mitochondrial DNA of the salamander family Ambystomatidae (Amphibia: Caudata). Mol Biol Evol. 1997 Nov;14(11):1167–1176. doi: 10.1093/oxfordjournals.molbev.a025726. [DOI] [PubMed] [Google Scholar]
- Odorico D. M., Miller D. J. Variation in the ribosomal internal transcribed spacers and 5.8S rDNA among five species of Acropora (Cnidaria; Scleractinia): patterns of variation consistent with reticulate evolution. Mol Biol Evol. 1997 May;14(5):465–473. doi: 10.1093/oxfordjournals.molbev.a025783. [DOI] [PubMed] [Google Scholar]
- Pont-Kingdon G. A., Beagley C. T., Okimoto R., Wolstenholme D. R. Mitochondrial DNA of the sea anemone, Metridium senile (Cnidaria): prokaryote-like genes for tRNA(f-Met) and small-subunit ribosomal RNA, and standard genetic code specificities for AGR and ATA codons. J Mol Evol. 1994 Oct;39(4):387–399. doi: 10.1007/BF00160271. [DOI] [PubMed] [Google Scholar]
- Pont-Kingdon G., Okada N. A., Macfarlane J. L., Beagley C. T., Watkins-Sims C. D., Cavalier-Smith T., Clark-Walker G. D., Wolstenholme D. R. Mitochondrial DNA of the coral Sarcophyton glaucum contains a gene for a homologue of bacterial MutS: a possible case of gene transfer from the nucleus to the mitochondrion. J Mol Evol. 1998 Apr;46(4):419–431. doi: 10.1007/pl00006321. [DOI] [PubMed] [Google Scholar]
- Schlötterer C., Amos B., Tautz D. Conservation of polymorphic simple sequence loci in cetacean species. Nature. 1991 Nov 7;354(6348):63–65. doi: 10.1038/354063a0. [DOI] [PubMed] [Google Scholar]
- Shields G. F., Wilson A. C. Calibration of mitochondrial DNA evolution in geese. J Mol Evol. 1987;24(3):212–217. doi: 10.1007/BF02111234. [DOI] [PubMed] [Google Scholar]
- Wolfe K. H., Sharp P. M., Li W. H. Mutation rates differ among regions of the mammalian genome. Nature. 1989 Jan 19;337(6204):283–285. doi: 10.1038/337283a0. [DOI] [PubMed] [Google Scholar]
- Wu C. I., Li W. H. Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1741–1745. doi: 10.1073/pnas.82.6.1741. [DOI] [PMC free article] [PubMed] [Google Scholar]
