Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2000 Feb 7;267(1440):281–292. doi: 10.1098/rspb.2000.0998

Phylogeography and population history of Atlantic mackerel (Scomber scombrus L.): a genealogical approach reveals genetic structuring among the eastern Atlantic stocks.

C L Nesbø 1, E K Rueness 1, S A Iversen 1, D W Skagen 1, K S Jakobsen 1
PMCID: PMC1690521  PMID: 10714883

Abstract

Despite the resolving power of DNA markers, pelagic and migratory marine fish species generally show very little geographical population structuring. In mackerel (Scomber scombrus L.) population differentiation has been detected only at a transatlantic scale. By applying two regions in mitochondrial DNA (mtDNA) (D-loop and cytochrome b (cytb)) in combination with genealogical and frequency-based statistical approaches, our data suggest population differentiation among eastern Atlantic spawning stocks. In contrast, and indicative of homing behaviour, no genetic structuring was observed among shoals of individuals outside the spawning season. Among spawning stocks, mtDNA D-loop sequences detected differentiation within the eastern Atlantic, while the cytb gene detected transatlantic differentiation. The impact of recurrent events (e.g. gene flow restricted by isolation by distance) and historic events (e.g. population range expansions) among spawning stocks was investigated applying a nested cladistic analysis of geographical distribution of cytb haplotype lineages. In the eastern Atlantic, historical population range expansion, presumably in connection with recolonization of northern areas after the last glaciation, is suggested to be the main factor determining mtDNA lineage distribution. This was supported by estimates of mtDNA nucleotide diversity, where the highest diversity was observed for the stock spawning in the Bay of Biscay, for which the size estimate is only 15% of the largest stock (Celtic Sea). In addition to revealing population differentiation, our data demonstrate the importance of sampling strategy and the power of applying statistical methods addressing both ongoing and historical population processes.

Full Text

The Full Text of this article is available as a PDF (457.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Camper J. D., Barber R. C., Richardson L. R., Gold J. R. Mitochondrial DNA variation among red snapper (Lutjanus campechanus) from the Gulf of Mexico. Mol Mar Biol Biotechnol. 1993 Jun;2(3):154–161. [PubMed] [Google Scholar]
  2. Cantatore P., Roberti M., Pesole G., Ludovico A., Milella F., Gadaleta M. N., Saccone C. Evolutionary analysis of cytochrome b sequences in some Perciformes: evidence for a slower rate of evolution than in mammals. J Mol Evol. 1994 Dec;39(6):589–597. doi: 10.1007/BF00160404. [DOI] [PubMed] [Google Scholar]
  3. Carr S. M., Snellen A. J., Howse K. A., Wroblewski J. S. Mitochondrial DNA sequence variation and genetic stock structure of Atlantic cod (Gadus morhua) from bay and offshore locations on the Newfoundland continental shelf. Mol Ecol. 1995 Feb;4(1):79–88. doi: 10.1111/j.1365-294x.1995.tb00194.x. [DOI] [PubMed] [Google Scholar]
  4. Cavalli-Sforza L. L., Edwards A. W. Phylogenetic analysis. Models and estimation procedures. Am J Hum Genet. 1967 May;19(3 Pt 1):233–257. [PMC free article] [PubMed] [Google Scholar]
  5. Donnelly P., Tavaré S. Coalescents and genealogical structure under neutrality. Annu Rev Genet. 1995;29:401–421. doi: 10.1146/annurev.ge.29.120195.002153. [DOI] [PubMed] [Google Scholar]
  6. Ewens W. J. The sampling theory of selectively neutral alleles. Theor Popul Biol. 1972 Mar;3(1):87–112. doi: 10.1016/0040-5809(72)90035-4. [DOI] [PubMed] [Google Scholar]
  7. Excoffier L., Smouse P. E., Quattro J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992 Jun;131(2):479–491. doi: 10.1093/genetics/131.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hammer M. F., Karafet T., Rasanayagam A., Wood E. T., Altheide T. K., Jenkins T., Griffiths R. C., Templeton A. R., Zegura S. L. Out of Africa and back again: nested cladistic analysis of human Y chromosome variation. Mol Biol Evol. 1998 Apr;15(4):427–441. doi: 10.1093/oxfordjournals.molbev.a025939. [DOI] [PubMed] [Google Scholar]
  9. Magoulas A., Tsimenides N., Zouros E. Mitochondrial DNA phylogeny and the reconstruction of the population history of a species: the case of the European anchovy (Engraulis encrasicolus). Mol Biol Evol. 1996 Jan;13(1):178–190. doi: 10.1093/oxfordjournals.molbev.a025554. [DOI] [PubMed] [Google Scholar]
  10. Nesbø C. L., Arab M. O., Jakobsen K. S. Heteroplasmy, length and sequence variation in the mtDNA control regions of three percid fish species (Perca fluviatilis, Acerina cernua, Stizostedion lucioperca). Genetics. 1998 Apr;148(4):1907–1919. doi: 10.1093/genetics/148.4.1907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Roff D. A., Bentzen P. The statistical analysis of mitochondrial DNA polymorphisms: chi 2 and the problem of small samples. Mol Biol Evol. 1989 Sep;6(5):539–545. doi: 10.1093/oxfordjournals.molbev.a040568. [DOI] [PubMed] [Google Scholar]
  12. Rudi K., Kroken M., Dahlberg O. J., Deggerdal A., Jakobsen K. S., Larsen F. Rapid, universal method to isolate PCR-ready DNA using magnetic beads. Biotechniques. 1997 Mar;22(3):506–511. doi: 10.2144/97223rr01. [DOI] [PubMed] [Google Scholar]
  13. Seale J. R., Varma S., Swirsky D. M., Pandolfi P. P., Goldman J. M., Cross N. C. Quantification of PML-RAR alpha transcripts in acute promyelocytic leukaemia: explanation for the lack of sensitivity of RT-PCR for the detection of minimal residual disease and induction of the leukaemia-specific mRNA by alpha interferon. Br J Haematol. 1996 Oct;95(1):95–101. doi: 10.1046/j.1365-2141.1996.d01-1881.x. [DOI] [PubMed] [Google Scholar]
  14. Smith K. A., Chernova O. B., Groves R. P., Stark M. B., Martínez J. L., Davidson J. N., Trent J. M., Patterson T. E., Agarwal A., Duncan P. Multiple mechanisms of N-phosphonacetyl-L-aspartate resistance in human cell lines: carbamyl-P synthetase/aspartate transcarbamylase/dihydro-orotase gene amplification is frequent only when chromosome 2 is rearranged. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1816–1821. doi: 10.1073/pnas.94.5.1816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Stanley H. F., Casey S., Carnahan J. M., Goodman S., Harwood J., Wayne R. K. Worldwide patterns of mitochondrial DNA differentiation in the harbor seal (Phoca vitulina). Mol Biol Evol. 1996 Feb;13(2):368–382. doi: 10.1093/oxfordjournals.molbev.a025596. [DOI] [PubMed] [Google Scholar]
  16. Tajima F. Evolutionary relationship of DNA sequences in finite populations. Genetics. 1983 Oct;105(2):437–460. doi: 10.1093/genetics/105.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Templeton A. R., Boerwinkle E., Sing C. F. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. I. Basic theory and an analysis of alcohol dehydrogenase activity in Drosophila. Genetics. 1987 Oct;117(2):343–351. doi: 10.1093/genetics/117.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Templeton A. R., Crandall K. A., Sing C. F. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics. 1992 Oct;132(2):619–633. doi: 10.1093/genetics/132.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Templeton A. R. Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Mol Ecol. 1998 Apr;7(4):381–397. doi: 10.1046/j.1365-294x.1998.00308.x. [DOI] [PubMed] [Google Scholar]
  20. Watterson G. A. The homozygosity test of neutrality. Genetics. 1978 Feb;88(2):405–417. doi: 10.1093/genetics/88.2.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wenink P. W., Baker A. J., Tilanus M. G. Hypervariable-control-region sequences reveal global population structuring in a long-distance migrant shorebird, the Dunlin (Calidris alpina). Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):94–98. doi: 10.1073/pnas.90.1.94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zhu D., Jamieson B. G., Hugall A., Moritz C. Sequence evolution and phylogenetic signal in control-region and cytochrome b sequences of rainbow fishes (Melanotaeniidae). Mol Biol Evol. 1994 Jul;11(4):672–683. doi: 10.1093/oxfordjournals.molbev.a040146. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES