Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2000 Feb 7;267(1440):257–263. doi: 10.1098/rspb.2000.0995

Sex allocation and population structure in apicomplexan (protozoa) parasites.

S A West 1, T G Smith 1, A F Read 1
PMCID: PMC1690522  PMID: 10714880

Abstract

Establishing the selfing, rate of parasites is important for studies in clinical and epidemiological medicine as well as evolutionary biology Sex allocation theory offers a relatively cheap and easy way to estimate selfing rates in natural parasite populations. Local mate competition (LMC) theory predicts that the optimal sex ratio (r*; defined as proportion males) is related to the selfing rate (s) by the equation r* = (1-s)/2. In this paper, we generalize the application of sex allocation theory across parasitic protozoa in the phylum Apicomplexa. This cosmopolitan phylum consists entirely of parasites, and includes a number of species of medical and veterinary importance. We suggest that LMC theory should apply to eimeriorin intestinal parasites. As predicted, data from 13 eimeriorin species showed a female-biased sex ratio, with the sex ratios suggesting high levels of selfing (0.8-1.0). Importantly, our estimate of the selfing rate in one of these species, Toxoplasma gondii, is in agreement with previous genetic analyses. In contrast, we predict that LMC theory will not apply to the groups in which syzygy occurs (adeleorins, gregarines and piroplasms). Syzygy occurs when a single male gametocyte and a single female gametocyte pair together physically or in close proximity, just prior to fertilization. As predicted, data from four adeleorin species showed sex ratios not significantly different from 0.5.

Full Text

The Full Text of this article is available as a PDF (210.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allsopp M. T., Cavalier-Smith T., De Waal D. T., Allsopp B. A. Phylogeny and evolution of the piroplasms. Parasitology. 1994 Feb;108(Pt 2):147–152. doi: 10.1017/s0031182000068232. [DOI] [PubMed] [Google Scholar]
  2. Baker D. G., Speer C. A., Yamaguchi A., Griffey S. M., Dubey J. P. An unusual coccidian parasite causing pneumonia in a northern cardinal (Cardinalis cardinalis). J Wildl Dis. 1996 Jan;32(1):130–132. doi: 10.7589/0090-3558-32.1.130. [DOI] [PubMed] [Google Scholar]
  3. Barta J. R., Jenkins M. C., Danforth H. D. Evolutionary relationships of avian Eimeria species among other Apicomplexan protozoa: monophyly of the apicomplexa is supported. Mol Biol Evol. 1991 May;8(3):345–355. doi: 10.1093/oxfordjournals.molbev.a040653. [DOI] [PubMed] [Google Scholar]
  4. Barta J. R. Phylogenetic analysis of the class Sporozoea (phylum Apicomplexa Levine, 1970): evidence for the independent evolution of heteroxenous life cycles. J Parasitol. 1989 Apr;75(2):195–206. [PubMed] [Google Scholar]
  5. Bonnin A., Gut J., Dubremetz J. F., Nelson R. G., Camerlynck P. Monoclonal antibodies identify a subset of dense granules in Cryptosporidium parvum zoites and gamonts. J Eukaryot Microbiol. 1995 Jul-Aug;42(4):395–401. doi: 10.1111/j.1550-7408.1995.tb01601.x. [DOI] [PubMed] [Google Scholar]
  6. Chauve C. M., Reynaud M. C., Gounel J. M. Description d'Eimeria mulardi n. sp. chez le canard mulard. Etude de la phase endogène de son cycle évolutif avec mise en évidence du développement intranucléaire. Parasite. 1994 Mar;1(1):15–22. doi: 10.1051/parasite/1994011015. [DOI] [PubMed] [Google Scholar]
  7. Dubey J. P. Development of ox-coyote cycle of Sarcocystis cruzi. J Protozool. 1982 Nov;29(4):591–601. doi: 10.1111/j.1550-7408.1982.tb01343.x. [DOI] [PubMed] [Google Scholar]
  8. Dubey J. P., Fayer R. Development of Isospora begemina in dogs and other mammals. Parasitology. 1976 Dec;73(3):371–380. doi: 10.1017/s0031182000047041. [DOI] [PubMed] [Google Scholar]
  9. Dubey J. P., Frenkel J. K. Cyst-induced toxoplasmosis in cats. J Protozool. 1972 Feb;19(1):155–177. doi: 10.1111/j.1550-7408.1972.tb03431.x. [DOI] [PubMed] [Google Scholar]
  10. Dubey J. P. Life cycle of Isospora rivolta (Grassi, 1879) in cats and mice. J Protozool. 1979 Aug;26(3):433–443. doi: 10.1111/j.1550-7408.1979.tb04650.x. [DOI] [PubMed] [Google Scholar]
  11. Dubey J. P. Life-cycle of Isospora ohioensis in dogs. Parasitology. 1978 Aug;77(1):1–11. doi: 10.1017/s0031182000048654. [DOI] [PubMed] [Google Scholar]
  12. Dye C., Godfray H. C. On sex ratio and inbreeding in malaria parasite populations. J Theor Biol. 1993 Mar 7;161(1):131–134. doi: 10.1006/jtbi.1993.1045. [DOI] [PubMed] [Google Scholar]
  13. Escalante A. A., Ayala F. J. Evolutionary origin of Plasmodium and other Apicomplexa based on rRNA genes. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5793–5797. doi: 10.1073/pnas.92.13.5793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Frank S. A. Models of parasite virulence. Q Rev Biol. 1996 Mar;71(1):37–78. doi: 10.1086/419267. [DOI] [PubMed] [Google Scholar]
  15. Gupta S., Ferguson N. M., Anderson R. M. Vaccination and the population structure of antigenically diverse pathogens that exchange genetic material. Proc Biol Sci. 1997 Oct 22;264(1387):1435–1443. doi: 10.1098/rspb.1997.0200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. HAMMOND D. M., CLARK W. N., MINER M. L. Endogenous phase of the life cycle of Eimeria auburnensis in calves. J Parasitol. 1961 Aug;47:591–596. [PubMed] [Google Scholar]
  17. Haberkorn A. Zur Wirtsspezifität von Eimeria contorta n.sp. (Sporozoa: Eimeriidae. Z Parasitenkd. 1971;37(4):303–314. doi: 10.1007/BF00259336. [DOI] [PubMed] [Google Scholar]
  18. Hamilton W. D. Extraordinary sex ratios. A sex-ratio theory for sex linkage and inbreeding has new implications in cytogenetics and entomology. Science. 1967 Apr 28;156(3774):477–488. doi: 10.1126/science.156.3774.477. [DOI] [PubMed] [Google Scholar]
  19. Hastings I. M., Wedgwood-Oppenheim B. Sex, strains and virulence. Parasitol Today. 1997 Oct;13(10):375–383. doi: 10.1016/s0169-4758(97)01110-1. [DOI] [PubMed] [Google Scholar]
  20. Herre E. A. Population structure and the evolution of virulence in nematode parasites of fig wasps. Science. 1993 Mar 5;259(5100):1442–1445. doi: 10.1126/science.259.5100.1442. [DOI] [PubMed] [Google Scholar]
  21. Johnson A. M. Speculation on possible life cycles for the clonal lineages in the genus toxoplasma. Parasitol Today. 1997 Oct;13(10):393–397. doi: 10.1016/s0169-4758(97)01129-0. [DOI] [PubMed] [Google Scholar]
  22. Mackinnon M. J., Hastings I. M. The evolution of multiple drug resistance in malaria parasites. Trans R Soc Trop Med Hyg. 1998 Mar-Apr;92(2):188–195. doi: 10.1016/s0035-9203(98)90745-3. [DOI] [PubMed] [Google Scholar]
  23. McManus D. P., Liu S., Song G., Xu Y., Wong J. M. The vaccine efficacy of native paramyosin (Sj-97) against Chinese Schistosoma japonicum. Int J Parasitol. 1998 Nov;28(11):1739–1742. doi: 10.1016/s0020-7519(98)00151-9. [DOI] [PubMed] [Google Scholar]
  24. Omata Y., Taka A., Terada K., Koyama T., Kanda M., Saito A., Dubey J. P. Isolation of coccidian enteroepithelial stages of Toxoplasma gondii from the intestinal mucosa of cats by Percoll density-gradient centrifugation. Parasitol Res. 1997;83(6):574–577. doi: 10.1007/s004360050300. [DOI] [PubMed] [Google Scholar]
  25. Pakandl M., Gaca K., Drouet-viard F., Coudert P. Eimeria coecicola Cheissin 1947: endogenous development in gut-associated lymphoid tissue. Parasitol Res. 1996;82(4):347–351. doi: 10.1007/s004360050124. [DOI] [PubMed] [Google Scholar]
  26. Paperna I., Finkelman S. Ultrastructural study of Sarcocystis muriviperae development in the intestine of its snake hosts. Folia Parasitol (Praha) 1996;43(1):13–19. [PubMed] [Google Scholar]
  27. Paul R. E., Day K. P. Mating Patterns of Plasmodium falciparum. Parasitol Today. 1998 May;14(5):197–202. doi: 10.1016/s0169-4758(98)01226-5. [DOI] [PubMed] [Google Scholar]
  28. Paul R. E., Packer M. J., Walmsley M., Lagog M., Ranford-Cartwright L. C., Paru R., Day K. P. Mating patterns in malaria parasite populations of Papua New Guinea. Science. 1995 Sep 22;269(5231):1709–1711. doi: 10.1126/science.7569897. [DOI] [PubMed] [Google Scholar]
  29. Read A. F., Anwar M., Shutler D., Nee S. Sex allocation and population structure in malaria and related parasitic protozoa. Proc Biol Sci. 1995 Jun 22;260(1359):359–363. doi: 10.1098/rspb.1995.0105. [DOI] [PubMed] [Google Scholar]
  30. Read A. F., Narara A., Nee S., Keymer A. E., Day K. P. Gametocyte sex ratios as indirect measures of outcrossing rates in malaria. Parasitology. 1992 Jun;104(Pt 3):387–395. doi: 10.1017/s0031182000063630. [DOI] [PubMed] [Google Scholar]
  31. Schall J. J. The sex ratio of Plasmodium gametocytes. Parasitology. 1989 Jun;98(Pt 3):343–350. doi: 10.1017/s0031182000061412. [DOI] [PubMed] [Google Scholar]
  32. Shirley M. W., Harvey D. A. Eimeria tenella: infection with a single sporocyst gives a clonal population. Parasitology. 1996 Jun;112(Pt 6):523–528. doi: 10.1017/s0031182000066099. [DOI] [PubMed] [Google Scholar]
  33. Shutler D., Bennett G. F., Mullie A. Sex proportions of Haemoproteus blood parasites and local mate competition. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6748–6752. doi: 10.1073/pnas.92.15.6748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sibley L. D., Boothroyd J. C. Virulent strains of Toxoplasma gondii comprise a single clonal lineage. Nature. 1992 Sep 3;359(6390):82–85. doi: 10.1038/359082a0. [DOI] [PubMed] [Google Scholar]
  35. Smith T. G. The genus Hepatozoon (Apicomplexa: Adeleina). J Parasitol. 1996 Aug;82(4):565–585. [PubMed] [Google Scholar]
  36. Tibayrenc M., Kjellberg F., Arnaud J., Oury B., Brenière S. F., Dardé M. L., Ayala F. J. Are eukaryotic microorganisms clonal or sexual? A population genetics vantage. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5129–5133. doi: 10.1073/pnas.88.12.5129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tibayrenc M., Kjellberg F., Ayala F. J. A clonal theory of parasitic protozoa: the population structures of Entamoeba, Giardia, Leishmania, Naegleria, Plasmodium, Trichomonas, and Trypanosoma and their medical and taxonomical consequences. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2414–2418. doi: 10.1073/pnas.87.7.2414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tibayrenc M. Population genetics of parasitic protozoa and other microorganisms. Adv Parasitol. 1995;36:47–115. doi: 10.1016/s0065-308x(08)60490-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES