Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2000 Feb 22;267(1441):379–384. doi: 10.1098/rspb.2000.1012

Environmental heterogeneity and balancing selection in the acorn barnacle Semibalanus balanoides.

P S Schmidt 1, M D Bertness 1, D M Rand 1
PMCID: PMC1690545  PMID: 10722220

Abstract

The northern acorn barnacle Semibalans banlanoides occupies several intertidal microhabitats which vary greatly in their degree of physical stress. This environmental heterogeneity creates distinct selection regimes which can maintain genetic variation in natural populations. Despite considerable attention placed on the link between spatial variation in fitness and balancing selection at specific loci, experimental manipulations and fitness estimates for molecular polymorphisms have rarely been conducted in the wild. The aim of this transplant experiment was to manipulate the level of physical stress experienced by a cohort of barnacles in the field and then investigate the spatial variation in fitness for genotypes at three loci: two candidate allozymes and the mitochondrial DNA control region. The viability of mannose-6-phosphate isomerase (Mpi) genotypes was dependent on the level of physical stress experienced in the various treatments; alternative homozygotes were favoured in alternative high stress-low stress environments. In contrast, the fitness of genotypes at other loci was equivalent among treatments and unaffected by the manipulation. Evaluated in the light of balancing selection models, these data indicate that the presence of multiple environmental niches is sufficient to promote a stable Mpi polymorphism in barnacle populations and that allelic variation at this locus reflects the process of adaptation to the heterogeneous intertidal landscape.

Full Text

The Full Text of this article is available as a PDF (250.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold H., Seitz U., Löhr G. W. Die Hexokinase und die Mannosetoxizität der Biene. Hoppe Seylers Z Physiol Chem. 1974 Mar;355(3):266–272. [PubMed] [Google Scholar]
  2. Berry A., Kreitman M. Molecular analysis of an allozyme cline: alcohol dehydrogenase in Drosophila melanogaster on the east coast of North America. Genetics. 1993 Jul;134(3):869–893. doi: 10.1093/genetics/134.3.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Eanes W. F., Kirchner M., Yoon J., Biermann C. H., Wang I. N., McCartney M. A., Verrelli B. C. Historical selection, amino acid polymorphism and lineage-specific divergence at the G6pd locus in Drosophila melanogaster and D. simulans. Genetics. 1996 Nov;144(3):1027–1041. doi: 10.1093/genetics/144.3.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hernández D., De la Fuente M. Mannose toxicity in Ehrlich ascites tumor cells. Biochem Cell Biol. 1989 Jun;67(6):311–314. doi: 10.1139/o89-048. [DOI] [PubMed] [Google Scholar]
  5. Hudson R. R., Kreitman M., Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics. 1987 May;116(1):153–159. doi: 10.1093/genetics/116.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Johannesson K., Johannesson B., Lundgren U. Strong natural selection causes microscale allozyme variation in a marine snail. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2602–2606. doi: 10.1073/pnas.92.7.2602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Karl S. A., Avise J. C. Balancing selection at allozyme loci in oysters: implications from nuclear RFLPs. Science. 1992 Apr 3;256(5053):100–102. doi: 10.1126/science.1348870. [DOI] [PubMed] [Google Scholar]
  8. Katz L. A., Harrison R. G. Balancing selection on electrophoretic variation of phosphoglucose isomerase in two species of field cricket: Gryllus veletis and G. offnsylvanicus. Genetics. 1997 Oct;147(2):609–621. doi: 10.1093/genetics/147.2.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kreitman M., Hudson R. R. Inferring the evolutionary histories of the Adh and Adh-dup loci in Drosophila melanogaster from patterns of polymorphism and divergence. Genetics. 1991 Mar;127(3):565–582. doi: 10.1093/genetics/127.3.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McDonald J. H., Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. doi: 10.1038/351652a0. [DOI] [PubMed] [Google Scholar]
  11. Pogson G. H., Mesa K. A., Boutilier R. G. Genetic population structure and gene flow in the Atlantic cod Gadus morhua: a comparison of allozyme and nuclear RFLP loci. Genetics. 1995 Jan;139(1):375–385. doi: 10.1093/genetics/139.1.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Siegismund H. R. Genetic studies of Gammarus. IV. Selection component analysis of the Gpi and the Mpi loci in Gammarus oceanicus. Hereditas. 1985;102(2):241–250. doi: 10.1111/j.1601-5223.1985.tb00622.x. [DOI] [PubMed] [Google Scholar]
  13. Smith J. M., Hoekstra R. Polymorphism in a varied environment: how robust are the models? Genet Res. 1980 Feb;35(1):45–57. doi: 10.1017/s0016672300013926. [DOI] [PubMed] [Google Scholar]
  14. Sylvestre D. L., Zisfein J. B., Graham R. M., Homcy C. J. Serum-mediated enhancement of ANF accumulation in the culture medium of cardiac atriocytes. Biochem Biophys Res Commun. 1986 Oct 15;140(1):151–159. doi: 10.1016/0006-291x(86)91070-3. [DOI] [PubMed] [Google Scholar]
  15. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES