Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2000 Apr 22;267(1445):835–843. doi: 10.1098/rspb.2000.1079

Adherence and drug resistance: predictions for therapy outcome.

L M Wahl 1, M A Nowak 1
PMCID: PMC1690604  PMID: 10819155

Abstract

We combine standard pharmacokinetics with an established model of viral replication to predict the outcome of therapy as a function of adherence to the drug regimen. We consider two types of treatment failure: failure to eliminate the wild-type virus, and the emergence of drug-resistant virus. Specifically, we determine the conditions under which resistance dominates as a result of imperfect adherence. We derive this result for both single- and triple-drug therapies, with attention to conditions which favour the emergence of viral strains that are resistant to one or more drugs in a cocktail. Our analysis provides quantitative estimates of the degree of adherence necessary to prevent resistance. We derive results specific to the treatment of human immunodeficiency virus infection, but emphasize that our method is applicable to a range of viral or other infections treated by chemotherapy.

Full Text

The Full Text of this article is available as a PDF (378.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Austin D. J., Anderson R. M. Studies of antibiotic resistance within the patient, hospitals and the community using simple mathematical models. Philos Trans R Soc Lond B Biol Sci. 1999 Apr 29;354(1384):721–738. doi: 10.1098/rstb.1999.0425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Austin D. J., Kakehashi M., Anderson R. M. The transmission dynamics of antibiotic-resistant bacteria: the relationship between resistance in commensal organisms and antibiotic consumption. Proc Biol Sci. 1997 Nov 22;264(1388):1629–1638. doi: 10.1098/rspb.1997.0227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Austin D. J., Kristinsson K. G., Anderson R. M. The relationship between the volume of antimicrobial consumption in human communities and the frequency of resistance. Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):1152–1156. doi: 10.1073/pnas.96.3.1152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Austin D. J., White N. J., Anderson R. M. The dynamics of drug action on the within-host population growth of infectious agents: melding pharmacokinetics with pathogen population dynamics. J Theor Biol. 1998 Oct 7;194(3):313–339. doi: 10.1006/jtbi.1997.0438. [DOI] [PubMed] [Google Scholar]
  5. Besch C. L. Compliance in clinical trials. AIDS. 1995 Jan;9(1):1–10. doi: 10.1097/00002030-199501000-00001. [DOI] [PubMed] [Google Scholar]
  6. Bonhoeffer S., Lipsitch M., Levin B. R. Evaluating treatment protocols to prevent antibiotic resistance. Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):12106–12111. doi: 10.1073/pnas.94.22.12106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bonhoeffer S., May R. M., Shaw G. M., Nowak M. A. Virus dynamics and drug therapy. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6971–6976. doi: 10.1073/pnas.94.13.6971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bonhoeffer S., Nowak M. A. Pre-existence and emergence of drug resistance in HIV-1 infection. Proc Biol Sci. 1997 May 22;264(1382):631–637. doi: 10.1098/rspb.1997.0089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Coffin J. M. HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science. 1995 Jan 27;267(5197):483–489. doi: 10.1126/science.7824947. [DOI] [PubMed] [Google Scholar]
  10. Davies J. E. Origins, acquisition and dissemination of antibiotic resistance determinants. Ciba Found Symp. 1997;207:15–35. [PubMed] [Google Scholar]
  11. Frost S. D., McLean A. R. Quasispecies dynamics and the emergence of drug resistance during zidovudine therapy of HIV infection. AIDS. 1994 Mar;8(3):323–332. doi: 10.1097/00002030-199403000-00005. [DOI] [PubMed] [Google Scholar]
  12. Ickovics J. R., Meisler A. W. Adherence in AIDS clinical trials: a framework for clinical research and clinical care. J Clin Epidemiol. 1997 Apr;50(4):385–391. doi: 10.1016/s0895-4356(97)00041-3. [DOI] [PubMed] [Google Scholar]
  13. Jarvis B., Faulds D. Nelfinavir. A review of its therapeutic efficacy in HIV infection. Drugs. 1998 Jul;56(1):147–167. doi: 10.2165/00003495-199856010-00013. [DOI] [PubMed] [Google Scholar]
  14. Katzenstein D. A. Adherence as a particular issue with protease inhibitors. J Assoc Nurses AIDS Care. 1997;8 (Suppl):10–17. doi: 10.1016/s1055-3290(97)80003-9. [DOI] [PubMed] [Google Scholar]
  15. Kepler T. B., Perelson A. S. Drug concentration heterogeneity facilitates the evolution of drug resistance. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11514–11519. doi: 10.1073/pnas.95.20.11514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lea A. P., Faulds D. Ritonavir. Drugs. 1996 Oct;52(4):541–548. doi: 10.2165/00003495-199652040-00007. [DOI] [PubMed] [Google Scholar]
  17. Levin B. R., Antia R., Berliner E., Bloland P., Bonhoeffer S., Cohen M., DeRouin T., Fields P. I., Jafari H., Jernigan D. Resistance to antimicrobial chemotherapy: a prescription for research and action. Am J Med Sci. 1998 Feb;315(2):87–94. doi: 10.1097/00000441-199802000-00004. [DOI] [PubMed] [Google Scholar]
  18. Levin B. R., Lipsitch M., Bonhoeffer S. Population biology, evolution, and infectious disease: convergence and synthesis. Science. 1999 Feb 5;283(5403):806–809. doi: 10.1126/science.283.5403.806. [DOI] [PubMed] [Google Scholar]
  19. Levin B. R., Lipsitch M., Perrot V., Schrag S., Antia R., Simonsen L., Walker N. M., Stewart F. M. The population genetics of antibiotic resistance. Clin Infect Dis. 1997 Jan;24 (Suppl 1):S9–16. doi: 10.1093/clinids/24.supplement_1.s9. [DOI] [PubMed] [Google Scholar]
  20. Levin S. A., Andreasen a. V. Disease transmission dynamics and the evolution of antibiotic resistance in hospitals and communal settings. Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):800–801. doi: 10.1073/pnas.96.3.800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Levy S. B. Antibiotic resistance: an ecological imbalance. Ciba Found Symp. 1997;207:1–14. doi: 10.1002/9780470515358.ch1. [DOI] [PubMed] [Google Scholar]
  22. Lipsitch M., Levin B. R. Population dynamics of tuberculosis treatment: mathematical models of the roles of non-compliance and bacterial heterogeneity in the evolution of drug resistance. Int J Tuberc Lung Dis. 1998 Mar;2(3):187–199. [PubMed] [Google Scholar]
  23. Lipsitch M., Levin B. R. The population dynamics of antimicrobial chemotherapy. Antimicrob Agents Chemother. 1997 Feb;41(2):363–373. doi: 10.1128/aac.41.2.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. MACDONALD G. The analysis of equilibrium in malaria. Trop Dis Bull. 1952 Sep;49(9):813–829. [PubMed] [Google Scholar]
  25. May R. M., Anderson R. M. Population biology of infectious diseases: Part II. Nature. 1979 Aug 9;280(5722):455–461. doi: 10.1038/280455a0. [DOI] [PubMed] [Google Scholar]
  26. Mayers D. Rational approaches to resistance: nucleoside analogues. AIDS. 1996 Nov;10 (Suppl 1):S9–13. [PubMed] [Google Scholar]
  27. McDonald C. K., Kuritzkes D. R. Human immunodeficiency virus type 1 protease inhibitors. Arch Intern Med. 1997 May 12;157(9):951–959. [PubMed] [Google Scholar]
  28. McLean A. R., Nowak M. A. Competition between zidovudine-sensitive and zidovudine-resistant strains of HIV. AIDS. 1992 Jan;6(1):71–79. doi: 10.1097/00002030-199201000-00009. [DOI] [PubMed] [Google Scholar]
  29. Mehta S., Moore R. D., Graham N. M. Potential factors affecting adherence with HIV therapy. AIDS. 1997 Nov 15;11(14):1665–1670. doi: 10.1097/00002030-199714000-00002. [DOI] [PubMed] [Google Scholar]
  30. Moyle G., Gazzard B. Current knowledge and future prospects for the use of HIV protease inhibitors. Drugs. 1996 May;51(5):701–712. doi: 10.2165/00003495-199651050-00001. [DOI] [PubMed] [Google Scholar]
  31. Nowak M. A., Anderson R. M., McLean A. R., Wolfs T. F., Goudsmit J., May R. M. Antigenic diversity thresholds and the development of AIDS. Science. 1991 Nov 15;254(5034):963–969. doi: 10.1126/science.1683006. [DOI] [PubMed] [Google Scholar]
  32. Nowak M. A., Bonhoeffer S., Shaw G. M., May R. M. Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations. J Theor Biol. 1997 Jan 21;184(2):203–217. doi: 10.1006/jtbi.1996.0307. [DOI] [PubMed] [Google Scholar]
  33. Ribeiro R. M., Bonhoeffer S., Nowak M. A. The frequency of resistant mutant virus before antiviral therapy. AIDS. 1998 Mar 26;12(5):461–465. doi: 10.1097/00002030-199805000-00006. [DOI] [PubMed] [Google Scholar]
  34. Richman D. D., Meng T. C., Spector S. A., Fischl M. A., Resnick L., Lai S. Resistance to AZT and ddC during long-term combination therapy in patients with advanced infection with human immunodeficiency virus. J Acquir Immune Defic Syndr. 1994 Feb;7(2):135–138. [PubMed] [Google Scholar]
  35. Schuurman R., Nijhuis M., van Leeuwen R., Schipper P., de Jong D., Collis P., Danner S. A., Mulder J., Loveday C., Christopherson C. Rapid changes in human immunodeficiency virus type 1 RNA load and appearance of drug-resistant virus populations in persons treated with lamivudine (3TC). J Infect Dis. 1995 Jun;171(6):1411–1419. doi: 10.1093/infdis/171.6.1411. [DOI] [PubMed] [Google Scholar]
  36. Stilianakis N. I., Boucher C. A., De Jong M. D., Van Leeuwen R., Schuurman R., De Boer R. J. Clinical data sets of human immunodeficiency virus type 1 reverse transcriptase-resistant mutants explained by a mathematical model. J Virol. 1997 Jan;71(1):161–168. doi: 10.1128/jvi.71.1.161-168.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yorke J. A., Nathanson N., Pianigiani G., Martin J. Seasonality and the requirements for perpetuation and eradication of viruses in populations. Am J Epidemiol. 1979 Feb;109(2):103–123. doi: 10.1093/oxfordjournals.aje.a112666. [DOI] [PubMed] [Google Scholar]
  38. de Jong M. D., Veenstra J., Stilianakis N. I., Schuurman R., Lange J. M., de Boer R. J., Boucher C. A. Host-parasite dynamics and outgrowth of virus containing a single K70R amino acid change in reverse transcriptase are responsible for the loss of human immunodeficiency virus type 1 RNA load suppression by zidovudine. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5501–5506. doi: 10.1073/pnas.93.11.5501. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES