Abstract
Both the chloroplast and mitochondrial genomes are used extensively in studies of plant population genetics and systematics. In the majority of angiosperms, the chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) are each primarily transmitted maternally, but rare biparental transmission is possible. The extent to which the cpDNA and mtDNA are in linkage disequilibrium is argued to be dependent on the fidelity of co-transmission and the population structure. This study reports complete linkage disequilibrium between cpDNA and mtDNA haplotypes in 86 individuals from 17 populations of Silene vulgaris, a gynodioecious plant species. Phylogenetic analysis of cpDNA and mtDNA haplotypes within 14 individuals supports a hypothesis that the evolutionary histories of the chloroplasts and mitochondria are congruent within S. vulgaris, as might be expected if this association persists for long periods. This provides the first documentation of the evolutionary consequences of long-term associations between chloroplast and mitochondrial genomes within a species. Factors that contribute to the phylogenetic and linkage associations, as well as the potential for intergenomic hitchhiking resulting from selection on genes in one organellar genome are discussed.
Full Text
The Full Text of this article is available as a PDF (266.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bowe L. M., Coat G., dePamphilis C. W. Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales' closest relatives are conifers. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4092–4097. doi: 10.1073/pnas.97.8.4092. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Charlesworth D., Laporte V. The male-sterility polymorphism of Silene vulgaris: analysis of genetic dat from two populations and comparison with Thymus vulgaris. Genetics. 1998 Nov;150(3):1267–1282. doi: 10.1093/genetics/150.3.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chaw S. M., Parkinson C. L., Cheng Y., Vincent T. M., Palmer J. D. Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4086–4091. doi: 10.1073/pnas.97.8.4086. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cho Y., Qiu Y. L., Kuhlman P., Palmer J. D. Explosive invasion of plant mitochondria by a group I intron. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14244–14249. doi: 10.1073/pnas.95.24.14244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clegg M. T., Gaut B. S., Learn G. H., Jr, Morton B. R. Rates and patterns of chloroplast DNA evolution. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6795–6801. doi: 10.1073/pnas.91.15.6795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Desplanque B., Viard F., Bernard J., Forcioli D., Saumitou-Laprade P., Cuguen J., Van Dijk H. The linkage disequilibrium between chloroplast DNA and mitochondrial DNA haplotypes in Beta vulgaris ssp. maritima (L.): the usefulness of both genomes for population genetic studies. Mol Ecol. 2000 Feb;9(2):141–154. doi: 10.1046/j.1365-294x.2000.00843.x. [DOI] [PubMed] [Google Scholar]
- Dumolin-Lapègue S., Pemonge M. H., Petit R. J. Association between chloroplast and mitochondrial lineages in oaks. Mol Biol Evol. 1998 Oct;15(10):1321–1331. doi: 10.1093/oxfordjournals.molbev.a025860. [DOI] [PubMed] [Google Scholar]
- Hamilton MB. Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Mol Ecol. 1999 Mar;8(3):521–523. [PubMed] [Google Scholar]
- Latta R. G., Mitton J. B. A comparison of population differentiation across four classes of gene marker in limber pine (Pinus flexilis James). Genetics. 1997 Jul;146(3):1153–1163. doi: 10.1093/genetics/146.3.1153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marcad I, I, Souty-Grosset C, Bouchon D, Rigaud T, Raimond R. Mitochondrial DNA variability and wolbachia infection in two sibling woodlice species . Heredity (Edinb) 1999 Jul;83(Pt 1):71–78. doi: 10.1038/sj.hdy.6885380. [DOI] [PubMed] [Google Scholar]
- Martínez-Zapater J. M., Gil P., Capel J., Somerville C. R. Mutations at the Arabidopsis CHM locus promote rearrangements of the mitochondrial genome. Plant Cell. 1992 Aug;4(8):889–899. doi: 10.1105/tpc.4.8.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCauley D. E. Contrasting the distribution of chloroplast DNA and allozyme polymorphism among local populations of Silene alba: implications for studies of gene flow in plants. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8127–8131. doi: 10.1073/pnas.91.17.8127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCauley DE, Olson MS, Emery SN, Taylor DR. Population Structure Influences Sex Ratio Evolution in a Gynodioecious Plant. Am Nat. 2000 Jun;155(6):814–819. doi: 10.1086/303359. [DOI] [PubMed] [Google Scholar]
- Rigaud T., Bouchon D., Souty-Grosset C., Raimond R. Mitochondrial DNA polymorphism, sex ratio distorters and population genetics in the isopod Armadillidium vulgare. Genetics. 1999 Aug;152(4):1669–1677. doi: 10.1093/genetics/152.4.1669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
- Sakamoto W., Kondo H., Murata M., Motoyoshi F. Altered mitochondrial gene expression in a maternal distorted leaf mutant of Arabidopsis induced by chloroplast mutator. Plant Cell. 1996 Aug;8(8):1377–1390. doi: 10.1105/tpc.8.8.1377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schnabel A., Asmussen M. A. Definition and properties of disequilibria within nuclear-mitochondrial-chloroplast and other nuclear-dicytoplasmic systems. Genetics. 1989 Sep;123(1):199–215. doi: 10.1093/genetics/123.1.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taberlet P., Gielly L., Pautou G., Bouvet J. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol. 1991 Nov;17(5):1105–1109. doi: 10.1007/BF00037152. [DOI] [PubMed] [Google Scholar]
- Timothy D. H., Levings C. S., Pring D. R., Conde M. F., Kermicle J. L. Organelle DNA variation and systematic relationships in the genus Zea: Teosinte. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4220–4224. doi: 10.1073/pnas.76.9.4220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu J., Krutovskii K. V., Strauss S. H. Abundant mitochondrial genome diversity, population differentiation and convergent evolution in pines. Genetics. 1998 Dec;150(4):1605–1614. doi: 10.1093/genetics/150.4.1605. [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.