Abstract
The problem of inferring confidence sets of gene trees is discussed without assuming that the substitution model or the branching pattern of any of the investigated trees is correct. In this case, widely used methods to compare genealogies can give highly contradicting results. Here, three methods to infer confidence sets that are robust against model misspecification are compared, including a new approach based on estimating the confidence in a specific tree using expected-likelihood weights. The power of the investigated methods is studied by analysing HIV-1 and mtDNA sequence data as well as simulated sequences. Finally, guidelines for choosing an appropriate method to compare multiple gene trees are provided.
Full Text
The Full Text of this article is available as a PDF (165.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adachi J., Hasegawa M. Model of amino acid substitution in proteins encoded by mitochondrial DNA. J Mol Evol. 1996 Apr;42(4):459–468. doi: 10.1007/BF02498640. [DOI] [PubMed] [Google Scholar]
- Drummond A., Strimmer K. PAL: an object-oriented programming library for molecular evolution and phylogenetics. Bioinformatics. 2001 Jul;17(7):662–663. doi: 10.1093/bioinformatics/17.7.662. [DOI] [PubMed] [Google Scholar]
- Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17(6):368–376. doi: 10.1007/BF01734359. [DOI] [PubMed] [Google Scholar]
- Goldman N., Anderson J. P., Rodrigo A. G. Likelihood-based tests of topologies in phylogenetics. Syst Biol. 2000 Dec;49(4):652–670. doi: 10.1080/106351500750049752. [DOI] [PubMed] [Google Scholar]
- Goldman N. Statistical tests of models of DNA substitution. J Mol Evol. 1993 Feb;36(2):182–198. doi: 10.1007/BF00166252. [DOI] [PubMed] [Google Scholar]
- Hendy M. D., Penny D., Steel M. A. A discrete Fourier analysis for evolutionary trees. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3339–3343. doi: 10.1073/pnas.91.8.3339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huelsenbeck J. P., Rannala B. Phylogenetic methods come of age: testing hypotheses in an evolutionary context. Science. 1997 Apr 11;276(5310):227–232. doi: 10.1126/science.276.5310.227. [DOI] [PubMed] [Google Scholar]
- Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980 Dec;16(2):111–120. doi: 10.1007/BF01731581. [DOI] [PubMed] [Google Scholar]
- Kirpensteijn Jolle, Timmermans-Sprang Elpetra P. M., van Garderen Evert, Rutteman Gerard R., Lantinga-van Leeuwen Irma S., Mol Jan A. Growth hormone gene expression in canine normal growth plates and spontaneous osteosarcoma. Mol Cell Endocrinol. 2002 Nov 29;197(1-2):179–185. doi: 10.1016/s0303-7207(02)00269-1. [DOI] [PubMed] [Google Scholar]
- Kishino H., Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol. 1989 Aug;29(2):170–179. doi: 10.1007/BF02100115. [DOI] [PubMed] [Google Scholar]
- Robertson D. L., Sharp P. M., McCutchan F. E., Hahn B. H. Recombination in HIV-1. Nature. 1995 Mar 9;374(6518):124–126. doi: 10.1038/374124b0. [DOI] [PubMed] [Google Scholar]
- Strimmer K., Moulton V. Likelihood analysis of phylogenetic networks using directed graphical models. Mol Biol Evol. 2000 Jun;17(6):875–881. doi: 10.1093/oxfordjournals.molbev.a026367. [DOI] [PubMed] [Google Scholar]
- Yang Z. Estimating the pattern of nucleotide substitution. J Mol Evol. 1994 Jul;39(1):105–111. doi: 10.1007/BF00178256. [DOI] [PubMed] [Google Scholar]