Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2002 May 22;269(1495):1039–1046. doi: 10.1098/rspb.2002.1982

Novel perspectives in wood certification and forensics: dry wood as a source of DNA.

Marie-France Deguilloux 1, Marie-Hélène Pemonge 1, Rémy J Petit 1
PMCID: PMC1690996  PMID: 12028761

Abstract

The importance of wood for human societies can hardly be understated. If dry wood were amenable to molecular genetic investigations, this could lead to major applications in wood forensics, certification, archaeology and palaeobotany. To evaluate the potential of wood for molecular genetic investigations, we have attempted to isolate and amplify, by PCR, DNA fragments of increasing size corresponding to all three plant genomes from different regions of 10 oak logs. Stringent procedures to avoid contamination with external DNA were used in order to demonstrate the authenticity of the fragments amplified. This authenticity was further confirmed by demonstrating genetic uniformity within each log using both nuclear and chloroplast microsatellites. For most wood samples DNA was degraded, and the sequences that gave the best results were those of small size and present in high copy number (chloroplast, mitochondrial, or repeated nuclear sequences). Both storage conditions and storage duration play a role in DNA conservation. Overall, this work demonstrates that molecular markers from all three plant genomes can be used for genetic analysis on dry oak wood, but outlines some limitations and the need for further evaluation of the potential of wood for DNA analysis.

Full Text

The Full Text of this article is available as a PDF (122.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailey J. F., Richards M. B., Macaulay V. A., Colson I. B., James I. T., Bradley D. G., Hedges R. E., Sykes B. C. Ancient DNA suggests a recent expansion of European cattle from a diverse wild progenitor species. Proc Biol Sci. 1996 Nov 22;263(1376):1467–1473. doi: 10.1098/rspb.1996.0214. [DOI] [PubMed] [Google Scholar]
  2. Bohr V. A., Dianov G. L. Oxidative DNA damage processing in nuclear and mitochondrial DNA. Biochimie. 1999 Jan-Feb;81(1-2):155–160. doi: 10.1016/s0300-9084(99)80048-0. [DOI] [PubMed] [Google Scholar]
  3. Bär W., Kratzer A., Mächler M., Schmid W. Postmortem stability of DNA. Forensic Sci Int. 1988 Oct;39(1):59–70. doi: 10.1016/0379-0738(88)90118-1. [DOI] [PubMed] [Google Scholar]
  4. Cano R. J. Analysing ancient DNA. Endeavour. 1996;20(4):162–167. doi: 10.1016/s0160-9327(96)10031-4. [DOI] [PubMed] [Google Scholar]
  5. Demesure B., Sodzi N., Petit R. J. A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol. 1995 Feb;4(1):129–131. doi: 10.1111/j.1365-294x.1995.tb00201.x. [DOI] [PubMed] [Google Scholar]
  6. Dumolin-Lapègue S., Demesure B., Fineschi S., Le Corre V., Petit R. J. Phylogeographic structure of white oaks throughout the European continent. Genetics. 1997 Aug;146(4):1475–1487. doi: 10.1093/genetics/146.4.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dumolin-Lapègue S., Pemonge M. H., Gielly L., Taberlet P., Petit R. J. Amplification of oak DNA from ancient and modern wood. Mol Ecol. 1999 Dec;8(12):2137–2140. doi: 10.1046/j.1365-294x.1999.00788.x. [DOI] [PubMed] [Google Scholar]
  8. Fernández De Simón B., Cadahía E., Conde E., García-Vallejo M. C. Evolution of phenolic compounds of spanish oak wood during natural seasoning. First results. J Agric Food Chem. 1999 Apr;47(4):1687–1694. doi: 10.1021/jf9805855. [DOI] [PubMed] [Google Scholar]
  9. Gold T. The deep, hot biosphere. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6045–6049. doi: 10.1073/pnas.89.13.6045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Golenberg E. M. Amplification and analysis of Miocene plant fossil DNA. Philos Trans R Soc Lond B Biol Sci. 1991 Sep 30;333(1268):419–427. doi: 10.1098/rstb.1991.0092. [DOI] [PubMed] [Google Scholar]
  11. Hagelberg E. Ancient and modern mitochondrial DNA sequences and the colonization of the Pacific. Electrophoresis. 1997 Aug;18(9):1529–1533. doi: 10.1002/elps.1150180907. [DOI] [PubMed] [Google Scholar]
  12. Hardy C., Callou C., Vigne J. D., Casane D., Dennebouy N., Mounolou J. C., Monnerot M. Rabbit mitochondrial DNA diversity from prehistoric to modern times. J Mol Evol. 1995 Mar;40(3):227–237. doi: 10.1007/BF00163228. [DOI] [PubMed] [Google Scholar]
  13. Krings M., Stone A., Schmitz R. W., Krainitzki H., Stoneking M., Päbo S. Neandertal DNA sequences and the origin of modern humans. Cell. 1997 Jul 11;90(1):19–30. doi: 10.1016/s0092-8674(00)80310-4. [DOI] [PubMed] [Google Scholar]
  14. Kwok S., Higuchi R. Avoiding false positives with PCR. Nature. 1989 May 18;339(6221):237–238. doi: 10.1038/339237a0. [DOI] [PubMed] [Google Scholar]
  15. Lee A. B., Cooper T. A. Improved direct PCR screen for bacterial colonies: wooden toothpicks inhibit PCR amplification. Biotechniques. 1995 Feb;18(2):225–226. [PubMed] [Google Scholar]
  16. Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993 Apr 22;362(6422):709–715. doi: 10.1038/362709a0. [DOI] [PubMed] [Google Scholar]
  17. Petit R. J., Pineau E., Demesure B., Bacilieri R., Ducousso A., Kremer A. Chloroplast DNA footprints of postglacial recolonization by oaks. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9996–10001. doi: 10.1073/pnas.94.18.9996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Steinkellner H., Fluch S., Turetschek E., Lexer C., Streiff R., Kremer A., Burg K., Glössl J. Identification and characterization of (GA/CT)n-microsatellite loci from Quercus petraea. Plant Mol Biol. 1997 Apr;33(6):1093–1096. doi: 10.1023/a:1005736722794. [DOI] [PubMed] [Google Scholar]
  19. Szymanski M., Barciszewska M. Z., Barciszewski J., Erdmann V. A. 5S Ribosomal RNA Data Bank. Nucleic Acids Res. 1999 Jan 1;27(1):158–160. doi: 10.1093/nar/27.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Taberlet P., Griffin S., Goossens B., Questiau S., Manceau V., Escaravage N., Waits L. P., Bouvet J. Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res. 1996 Aug 15;24(16):3189–3194. doi: 10.1093/nar/24.16.3189. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES