Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2002 Oct 7;269(1504):1981–1987. doi: 10.1098/rspb.2002.2109

Exposure to naturally circulating androgens during foetal life incurs direct reproductive costs in female spotted hyenas, but is prerequisite for male mating.

C M Drea 1, N J Place 1, M L Weldele 1, E M Coscia 1, P Licht 1, S E Glickman 1
PMCID: PMC1691120  PMID: 12396496

Abstract

Among all extant mammals, only the female spotted hyena (Crocuta crocuta) mates and gives birth through the tip of a peniform clitoris. Clitoral morphology is modulated by foetal exposure to endogenous, maternal androgens. First births through this organ are prolonged and remarkably difficult, often causing death in neonates. Additionally, mating poses a mechanical challenge for males, as they must reach an anterior position on the female's abdomen and then achieve entry at the site of the retracted clitoris. Here, we report that interfering with the actions of androgens prenatally permanently modifies hyena urogenital anatomy, facilitating subsequent parturition in nulliparous females who, thereby, produce live cubs. By contrast, comparable, permanent anatomical changes in males probably preclude reproduction, as exposure to prenatal anti-androgens produces a penis that is too short and has the wrong shape necessary for insertion during copulation. These data demonstrate that the reproductive costs of clitoral delivery result from exposure of the female foetus to naturally circulating androgens. Moreover, the same androgens that render an extremely unusual and laborious process even more reproductively costly in the female are apparently essential to the male's physical ability to reproduce with a normally masculinized female.

Full Text

The Full Text of this article is available as a PDF (220.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold A. P. Genetically triggered sexual differentiation of brain and behavior. Horm Behav. 1996 Dec;30(4):495–505. doi: 10.1006/hbeh.1996.0053. [DOI] [PubMed] [Google Scholar]
  2. Dewsbury D. A. Diversity and adaptation in rodent copulatory behavior. Science. 1975 Dec 5;190(4218):947–954. doi: 10.1126/science.1188377. [DOI] [PubMed] [Google Scholar]
  3. Drea C. M., Weldele M. L., Forger N. G., Coscia E. M., Frank L. G., Licht P., Glickman S. E. Androgens and masculinization of genitalia in the spotted hyaena (Crocuta crocuta). 2. Effects of prenatal anti-androgens. J Reprod Fertil. 1998 May;113(1):117–127. doi: 10.1530/jrf.0.1130117. [DOI] [PubMed] [Google Scholar]
  4. Fenstemaker S. B., Zup S. L., Frank L. G., Glickman S. E., Forger N. G. A sex difference in the hypothalamus of the spotted hyena. Nat Neurosci. 1999 Nov;2(11):943–945. doi: 10.1038/14728. [DOI] [PubMed] [Google Scholar]
  5. Frank L. G., Weldele M. L., Glickman S. E. Masculinization costs in hyaenas. Nature. 1995 Oct 19;377(6550):584–585. doi: 10.1038/377584b0. [DOI] [PubMed] [Google Scholar]
  6. Glickman S. E., Coscia E. M., Frank L. G., Licht P., Weldele M. L., Drea C. M. Androgens and masculinization of genitalia in the spotted hyaena (Crocuta crocuta). 3. Effects of juvenile gonadectomy. J Reprod Fertil. 1998 May;113(1):129–135. doi: 10.1530/jrf.0.1130129. [DOI] [PubMed] [Google Scholar]
  7. Glickman S. E., Frank L. G., Davidson J. M., Smith E. R., Siiteri P. K. Androstenedione may organize or activate sex-reversed traits in female spotted hyenas. Proc Natl Acad Sci U S A. 1987 May;84(10):3444–3447. doi: 10.1073/pnas.84.10.3444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Glickman S. E., Frank L. G., Pavgi S., Licht P. Hormonal correlates of 'masculinization' in female spotted hyaenas (Crocuta crocuta). 1. Infancy to sexual maturity. J Reprod Fertil. 1992 Jul;95(2):451–462. doi: 10.1530/jrf.0.0950451. [DOI] [PubMed] [Google Scholar]
  9. Herman R. A., Jones B., Mann D. R., Wallen K. Timing of prenatal androgen exposure: anatomical and endocrine effects on juvenile male and female rhesus monkeys. Horm Behav. 2000 Aug;38(1):52–66. doi: 10.1006/hbeh.2000.1608. [DOI] [PubMed] [Google Scholar]
  10. Imperato-McGinley J., Sanchez R. S., Spencer J. R., Yee B., Vaughan E. D. Comparison of the effects of the 5 alpha-reductase inhibitor finasteride and the antiandrogen flutamide on prostate and genital differentiation: dose-response studies. Endocrinology. 1992 Sep;131(3):1149–1156. doi: 10.1210/endo.131.3.1324152. [DOI] [PubMed] [Google Scholar]
  11. Licht P., Frank L. G., Pavgi S., Yalcinkaya T. M., Siiteri P. K., Glickman S. E. Hormonal correlates of 'masculinization' in female spotted hyaenas (Crocuta crocuta). 2. Maternal and fetal steroids. J Reprod Fertil. 1992 Jul;95(2):463–474. doi: 10.1530/jrf.0.0950463. [DOI] [PubMed] [Google Scholar]
  12. Licht P., Hayes T., Tsai P., Cunha G., Kim H., Golbus M., Hayward S., Martin M. C., Jaffe R. B., Glickman S. E. Androgens and masculinization of genitalia in the spotted hyaena (Crocuta crocuta). 1. Urogenital morphology and placental androgen production during fetal life. J Reprod Fertil. 1998 May;113(1):105–116. doi: 10.1530/jrf.0.1130105. [DOI] [PubMed] [Google Scholar]
  13. Licht P., Zucker I., Hubbard G., Boshes M. Circannual rhythms of plasma testosterone and luteinizing hormone levels in golden-mantled ground squirrels (Spermophilus lateralis). Biol Reprod. 1982 Sep;27(2):411–418. doi: 10.1095/biolreprod27.2.411. [DOI] [PubMed] [Google Scholar]
  14. Muller Martin N., Wrangham Richard. Sexual mimicry in hyenas. Q Rev Biol. 2002 Mar;77(1):3–16. doi: 10.1086/339199. [DOI] [PubMed] [Google Scholar]
  15. Neaves W. B., Griffin J. E., Wilson J. D. Sexual dimorphism of the phallus in spotted hyaena (Crocuta crocuta). J Reprod Fertil. 1980 Jul;59(2):509–513. doi: 10.1530/jrf.0.0590509. [DOI] [PubMed] [Google Scholar]
  16. Siiteri P. K., Wilson J. D. Testosterone formation and metabolism during male sexual differentiation in the human embryo. J Clin Endocrinol Metab. 1974 Jan;38(1):113–125. doi: 10.1210/jcem-38-1-113. [DOI] [PubMed] [Google Scholar]
  17. Thornton J. E., Irving S., Goy R. W. Effects of prenatal antiandrogen treatment on masculinization and defeminization of guinea pigs. Physiol Behav. 1991 Sep;50(3):471–475. doi: 10.1016/0031-9384(91)90532-s. [DOI] [PubMed] [Google Scholar]
  18. Wilson J. D., George F. W., Griffin J. E. The hormonal control of sexual development. Science. 1981 Mar 20;211(4488):1278–1284. doi: 10.1126/science.7010602. [DOI] [PubMed] [Google Scholar]
  19. Yalcinkaya T. M., Siiteri P. K., Vigne J. L., Licht P., Pavgi S., Frank L. G., Glickman S. E. A mechanism for virilization of female spotted hyenas in utero. Science. 1993 Jun 25;260(5116):1929–1931. doi: 10.1126/science.8391165. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES