Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2003 Aug 7;270(1524):1573–1578. doi: 10.1098/rspb.2003.2410

Transients and attractors in epidemics.

Chris T Bauch 1, David J D Earn 1
PMCID: PMC1691412  PMID: 12908977

Abstract

Historical records of childhood disease incidence reveal complex dynamics. For measles, a simple model has indicated that epidemic patterns represent attractors of a nonlinear dynamic system and that transitions between different attractors are driven by slow changes in birth rates and vaccination levels. The same analysis can explain the main features of chickenpox dynamics, but fails for rubella and whooping cough. We show that an additional (perturbative) analysis of the model, together with knowledge of the population size in question, can account for all the observed incidence patterns by predicting how stochastically sustained transient dynamics should be manifested in these systems.

Full Text

The Full Text of this article is available as a PDF (122.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. M., Grenfell B. T., May R. M. Oscillatory fluctuations in the incidence of infectious disease and the impact of vaccination: time series analysis. J Hyg (Lond) 1984 Dec;93(3):587–608. doi: 10.1017/s0022172400065177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bolker B. M., Grenfell B. T. Chaos and biological complexity in measles dynamics. Proc Biol Sci. 1993 Jan 22;251(1330):75–81. doi: 10.1098/rspb.1993.0011. [DOI] [PubMed] [Google Scholar]
  3. Earn D. J., Rohani P., Bolker B. M., Grenfell B. T. A simple model for complex dynamical transitions in epidemics. Science. 2000 Jan 28;287(5453):667–670. doi: 10.1126/science.287.5453.667. [DOI] [PubMed] [Google Scholar]
  4. Earn D. J., Rohani P., Grenfell B. T. Persistence, chaos and synchrony in ecology and epidemiology. Proc Biol Sci. 1998 Jan 7;265(1390):7–10. doi: 10.1098/rspb.1998.0256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fine P. E., Clarkson J. A. Measles in England and Wales--I: An analysis of factors underlying seasonal patterns. Int J Epidemiol. 1982 Mar;11(1):5–14. doi: 10.1093/ije/11.1.5. [DOI] [PubMed] [Google Scholar]
  6. Grenfell B. T., Bjørnstad O. N., Kappey J. Travelling waves and spatial hierarchies in measles epidemics. Nature. 2001 Dec 13;414(6865):716–723. doi: 10.1038/414716a. [DOI] [PubMed] [Google Scholar]
  7. Hastings A., Higgins K. Persistence of transients in spatially structured ecological models. Science. 1994 Feb 25;263(5150):1133–1136. doi: 10.1126/science.263.5150.1133. [DOI] [PubMed] [Google Scholar]
  8. London W. P., Yorke J. A. Recurrent outbreaks of measles, chickenpox and mumps. I. Seasonal variation in contact rates. Am J Epidemiol. 1973 Dec;98(6):453–468. doi: 10.1093/oxfordjournals.aje.a121575. [DOI] [PubMed] [Google Scholar]
  9. Olsen L. F., Schaffer W. M. Chaos versus noisy periodicity: alternative hypotheses for childhood epidemics. Science. 1990 Aug 3;249(4968):499–504. doi: 10.1126/science.2382131. [DOI] [PubMed] [Google Scholar]
  10. Olsen L. F., Truty G. L., Schaffer W. M. Oscillations and chaos in epidemics: a nonlinear dynamic study of six childhood diseases in Copenhagen, Denmark. Theor Popul Biol. 1988 Jun;33(3):344–370. doi: 10.1016/0040-5809(88)90019-6. [DOI] [PubMed] [Google Scholar]
  11. Rohani P., Earn D. J., Grenfell B. T. Impact of immunisation on pertussis transmission in England and Wales. Lancet. 2000 Jan 22;355(9200):285–286. doi: 10.1016/S0140-6736(99)04482-7. [DOI] [PubMed] [Google Scholar]
  12. Rohani P., Earn D. J., Grenfell B. T. Opposite patterns of synchrony in sympatric disease metapopulations. Science. 1999 Oct 29;286(5441):968–971. doi: 10.1126/science.286.5441.968. [DOI] [PubMed] [Google Scholar]
  13. Schaffer W. M. Can nonlinear dynamics elucidate mechanisms in ecology and epidemiology? IMA J Math Appl Med Biol. 1985;2(4):221–252. doi: 10.1093/imammb/2.4.221. [DOI] [PubMed] [Google Scholar]
  14. Schenzle D. An age-structured model of pre- and post-vaccination measles transmission. IMA J Math Appl Med Biol. 1984;1(2):169–191. doi: 10.1093/imammb/1.2.169. [DOI] [PubMed] [Google Scholar]
  15. Schwartz I. B. Multiple stable recurrent outbreaks and predictability in seasonally forced nonlinear epidemic models. J Math Biol. 1985;21(3):347–361. doi: 10.1007/BF00276232. [DOI] [PubMed] [Google Scholar]
  16. Schwartz I. B., Smith H. L. Infinite subharmonic bifurcation in an SEIR epidemic model. J Math Biol. 1983;18(3):233–253. doi: 10.1007/BF00276090. [DOI] [PubMed] [Google Scholar]
  17. Yorke J. A., London W. P. Recurrent outbreaks of measles, chickenpox and mumps. II. Systematic differences in contact rates and stochastic effects. Am J Epidemiol. 1973 Dec;98(6):469–482. doi: 10.1093/oxfordjournals.aje.a121576. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary data file
12908977s01.pdf (135.5KB, pdf)

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES