Abstract
Although molecular studies have helped to clarify the phylogeny of the problematic family Viverridae, a recent phylogenetic investigation based on cytochrome b (cyt b) has excluded the Asiatic linsangs (genus Prionodon) from the family. To assess the phylogenetic position of the Asiatic linsangs within the Feliformia, we analysed an exhaustive taxonomic sample set with cyt b and newly produced transthyretin intron I sequences (TR-I-I). TR-I-I alone and cyt b +TR-I-I combined (maximum-likelihood analysis) highly support the position of Asiatic linsangs as sister-group of the Felidae. The estimation of minimum divergence dates from molecular data suggests a splitting event ca. 33.3 million years (Myr) ago, which lends support to historical assertions that the Asiatic linsangs are "living fossils" that share a plesiomorphic morphotype with the Oligocene feliform Paleoprionodon. The African linsang is estimated to appear more than 20 Myr later and represents the sister-group of the genus Genetta. Our phylogenetic results illustrate numerous morphological convergences of "diagnostic" characters among Feliformia that might be problematic for the identification of fossil taxa. The morphotype reappearance from the Asiatic to the African linsangs suggests that the genome of the Feliformia conserved its potential ability of expression for a peculiar adaptive phenotype throughout evolution, in this case arboreality and hypercarnivory in tropical forest.
Full Text
The Full Text of this article is available as a PDF (199.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arctander P. Comparison of a mitochondrial gene and a corresponding nuclear pseudogene. Proc Biol Sci. 1995 Oct 23;262(1363):13–19. doi: 10.1098/rspb.1995.0170. [DOI] [PubMed] [Google Scholar]
- Cooper A., Lalueza-Fox C., Anderson S., Rambaut A., Austin J., Ward R. Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature. 2001 Feb 8;409(6821):704–707. doi: 10.1038/35055536. [DOI] [PubMed] [Google Scholar]
- Cunningham C. W. Can three incongruence tests predict when data should be combined? Mol Biol Evol. 1997 Jul;14(7):733–740. doi: 10.1093/oxfordjournals.molbev.a025813. [DOI] [PubMed] [Google Scholar]
- Flynn J. J., Nedbal M. A., Dragoo J. W., Honeycutt R. L. Whence the red panda? Mol Phylogenet Evol. 2000 Nov;17(2):190–199. doi: 10.1006/mpev.2000.0819. [DOI] [PubMed] [Google Scholar]
- Flynn J. J., Nedbal M. A. Phylogeny of the Carnivora (Mammalia): congruence vs incompatibility among multiple data sets. Mol Phylogenet Evol. 1998 Jun;9(3):414–426. doi: 10.1006/mpev.1998.0504. [DOI] [PubMed] [Google Scholar]
- Hassanin A., Lecointre G., Tillier S. The 'evolutionary signal' of homoplasy in protein-coding gene sequences and its consequences for a priori weighting in phylogeny. C R Acad Sci III. 1998 Jul;321(7):611–620. doi: 10.1016/s0764-4469(98)80464-2. [DOI] [PubMed] [Google Scholar]
- Hassanin Alexandre. Ancient specimens and DNA contamination: a case study from the 12S rRNA gene sequence of the "Linh Duong" bovid (Pseudonovibos spiralis). Naturwissenschaften. 2002 Mar;89(3):107–110. doi: 10.1007/s00114-001-0291-x. [DOI] [PubMed] [Google Scholar]
- Hillis D. M., Huelsenbeck J. P. Signal, noise, and reliability in molecular phylogenetic analyses. J Hered. 1992 May-Jun;83(3):189–195. doi: 10.1093/oxfordjournals.jhered.a111190. [DOI] [PubMed] [Google Scholar]
- Honeycutt R. L., Nedbal M. A., Adkins R. M., Janecek L. L. Mammalian mitochondrial DNA evolution: a comparison of the cytochrome b and cytochrome c oxidase II genes. J Mol Evol. 1995 Mar;40(3):260–272. doi: 10.1007/BF00163231. [DOI] [PubMed] [Google Scholar]
- Kishino H., Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol. 1989 Aug;29(2):170–179. doi: 10.1007/BF02100115. [DOI] [PubMed] [Google Scholar]
- Kocher T. D., Thomas W. K., Meyer A., Edwards S. V., Päbo S., Villablanca F. X., Wilson A. C. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6196–6200. doi: 10.1073/pnas.86.16.6196. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu F. G., Miyamoto M. M. Phylogenetic assessment of molecular and morphological data for eutherian mammals. Syst Biol. 1999 Mar;48(1):54–64. doi: 10.1080/106351599260436. [DOI] [PubMed] [Google Scholar]
- Lopez J. V., Culver M., Stephens J. C., Johnson W. E., O'Brien S. J. Rates of nuclear and cytoplasmic mitochondrial DNA sequence divergence in mammals. Mol Biol Evol. 1997 Mar;14(3):277–286. doi: 10.1093/oxfordjournals.molbev.a025763. [DOI] [PubMed] [Google Scholar]
- Lopez J. V., Yuhki N., Masuda R., Modi W., O'Brien S. J. Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat. J Mol Evol. 1994 Aug;39(2):174–190. doi: 10.1007/BF00163806. [DOI] [PubMed] [Google Scholar]
- Paxinos Ellen E., James Helen F., Olson Storrs L., Sorenson Michael D., Jackson Jennifer, Fleischer Robert C. mtDNA from fossils reveals a radiation of Hawaiian geese recently derived from the Canada goose (Brantacanadensis). Proc Natl Acad Sci U S A. 2002 Jan 29;99(3):1399–1404. doi: 10.1073/pnas.032166399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Posada D., Crandall K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14(9):817–818. doi: 10.1093/bioinformatics/14.9.817. [DOI] [PubMed] [Google Scholar]
- Prychitko T. M., Moore W. S. Comparative evolution of the mitochondrial cytochrome b gene and nuclear beta-fibrinogen intron 7 in woodpeckers. Mol Biol Evol. 2000 Jul;17(7):1101–1111. doi: 10.1093/oxfordjournals.molbev.a026391. [DOI] [PubMed] [Google Scholar]
- Rambaut A., Bromham L. Estimating divergence dates from molecular sequences. Mol Biol Evol. 1998 Apr;15(4):442–448. doi: 10.1093/oxfordjournals.molbev.a025940. [DOI] [PubMed] [Google Scholar]
- Simmons M. P., Ochoterena H. Gaps as characters in sequence-based phylogenetic analyses. Syst Biol. 2000 Jun;49(2):369–381. [PubMed] [Google Scholar]
- Springer M. S., Amrine H. M., Burk A., Stanhope M. J. Additional support for Afrotheria and Paenungulata, the performance of mitochondrial versus nuclear genes, and the impact of data partitions with heterogeneous base composition. Syst Biol. 1999 Mar;48(1):65–75. doi: 10.1080/106351599260445. [DOI] [PubMed] [Google Scholar]
- Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 Dec 15;25(24):4876–4882. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vidal N., Lecointre G. Weighting and congruence: a case study based on three mitochondrial genes in pitvipers. Mol Phylogenet Evol. 1998 Jun;9(3):366–374. doi: 10.1006/mpev.1998.0509. [DOI] [PubMed] [Google Scholar]
- Wayne R. K., Van Valkenburgh B., O'Brien S. J. Molecular distance and divergence time in carnivores and primates. Mol Biol Evol. 1991 May;8(3):297–319. doi: 10.1093/oxfordjournals.molbev.a040651. [DOI] [PubMed] [Google Scholar]
- Yang Z. Estimating the pattern of nucleotide substitution. J Mol Evol. 1994 Jul;39(1):105–111. doi: 10.1007/BF00178256. [DOI] [PubMed] [Google Scholar]
- Yoder Anne D., Burns Melissa M., Zehr Sarah, Delefosse Thomas, Veron Geraldine, Goodman Steven M., Flynn John J. Single origin of Malagasy Carnivora from an African ancestor. Nature. 2003 Feb 13;421(6924):734–737. doi: 10.1038/nature01303. [DOI] [PubMed] [Google Scholar]
- Zhang Y. P., Ryder O. A. Mitochondrial DNA sequence evolution in the Arctoidea. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9557–9561. doi: 10.1073/pnas.90.20.9557. [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.