Abstract
Viruses, bacteria, eukaryotic parasites, cancer cells, agricultural pests and other inconvenient animates have an unfortunate tendency to escape from selection pressures that are meant to control them. Chemotherapy, anti-viral drugs or antibiotics fail because their targets do not hold still, but evolve resistance. A major problem in developing vaccines is that microbes evolve and escape from immune responses. The fundamental question is the following: if a genetically diverse population of replicating organisms is challenged with a selection pressure that has the potential to eradicate it, what is the probability that this population will produce escape mutants? Here, we use multi-type branching processes to describe the accumulation of mutants in independent lineages. We calculate escape dynamics for arbitrary mutation networks and fitness landscapes. Our theory shows how to estimate the probability of success or failure of biomedical intervention, such as drug treatment and vaccination, against rapidly evolving organisms.
Full Text
The Full Text of this article is available as a PDF (138.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bonhoeffer S., Nowak M. A. Pre-existence and emergence of drug resistance in HIV-1 infection. Proc Biol Sci. 1997 May 22;264(1382):631–637. doi: 10.1098/rspb.1997.0089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Casado J. L., Dronda F., Hertogs K., Sabido R., Antela A., Martí-Belda P., Dehertogh P., Moreno S., NELSANE Study Efficacy, tolerance, and pharmacokinetics of the combination of stavudine, nevirapine, nelfinavir, and saquinavir as salvage regimen after ritonavir or indinavir failure. AIDS Res Hum Retroviruses. 2001 Jan 20;17(2):93–98. doi: 10.1089/08892220150217175. [DOI] [PubMed] [Google Scholar]
- Chang G., Roth C. B. Structure of MsbA from E. coli: a homolog of the multidrug resistance ATP binding cassette (ABC) transporters. Science. 2001 Sep 7;293(5536):1793–1800. doi: 10.1126/science.293.5536.1793. [DOI] [PubMed] [Google Scholar]
- Condra J. H., Schleif W. A., Blahy O. M., Gabryelski L. J., Graham D. J., Quintero J. C., Rhodes A., Robbins H. L., Roth E., Shivaprakash M. In vivo emergence of HIV-1 variants resistant to multiple protease inhibitors. Nature. 1995 Apr 6;374(6522):569–571. doi: 10.1038/374569a0. [DOI] [PubMed] [Google Scholar]
- Desrosiers R. C. Prospects for live attenuated HIV. Nat Med. 1998 Sep;4(9):982–982. doi: 10.1038/1949. [DOI] [PubMed] [Google Scholar]
- Dittmer U., Brooks D. M., Hasenkrug K. J. Requirement for multiple lymphocyte subsets in protection by a live attenuated vaccine against retroviral infection. Nat Med. 1999 Feb;5(2):189–193. doi: 10.1038/5550. [DOI] [PubMed] [Google Scholar]
- Eigen M., Schuster P. The hypercycle. A principle of natural self-organization. Part A: Emergence of the hypercycle. Naturwissenschaften. 1977 Nov;64(11):541–565. doi: 10.1007/BF00450633. [DOI] [PubMed] [Google Scholar]
- Gaschen Brian, Taylor Jesse, Yusim Karina, Foley Brian, Gao Feng, Lang Dorothy, Novitsky Vladimir, Haynes Barton, Hahn Beatrice H., Bhattacharya Tanmoy. Diversity considerations in HIV-1 vaccine selection. Science. 2002 Jun 28;296(5577):2354–2360. doi: 10.1126/science.1070441. [DOI] [PubMed] [Google Scholar]
- Ho David D., Huang Yaoxing. The HIV-1 vaccine race. Cell. 2002 Jul 26;110(2):135–138. doi: 10.1016/s0092-8674(02)00832-2. [DOI] [PubMed] [Google Scholar]
- Larder B. A., Kemp S. D. Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT). Science. 1989 Dec 1;246(4934):1155–1158. doi: 10.1126/science.2479983. [DOI] [PubMed] [Google Scholar]
- Lengauer C., Kinzler K. W., Vogelstein B. Genetic instabilities in human cancers. Nature. 1998 Dec 17;396(6712):643–649. doi: 10.1038/25292. [DOI] [PubMed] [Google Scholar]
- Lenski R. E. Bacterial evolution and the cost of antibiotic resistance. Int Microbiol. 1998 Dec;1(4):265–270. [PubMed] [Google Scholar]
- Letvin N. L. Progress in the development of an HIV-1 vaccine. Science. 1998 Jun 19;280(5371):1875–1880. doi: 10.1126/science.280.5371.1875. [DOI] [PubMed] [Google Scholar]
- Levin B. R., Lipsitch M., Bonhoeffer S. Population biology, evolution, and infectious disease: convergence and synthesis. Science. 1999 Feb 5;283(5403):806–809. doi: 10.1126/science.283.5403.806. [DOI] [PubMed] [Google Scholar]
- Levin B. R., Perrot V., Walker N. Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics. 2000 Mar;154(3):985–997. doi: 10.1093/genetics/154.3.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lipsitch M. Bacterial vaccines and serotype replacement: lessons from Haemophilus influenzae and prospects for Streptococcus pneumoniae. Emerg Infect Dis. 1999 May-Jun;5(3):336–345. doi: 10.3201/eid0503.990304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lipsitch M., Bergstrom C. T., Levin B. R. The epidemiology of antibiotic resistance in hospitals: paradoxes and prescriptions. Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1938–1943. doi: 10.1073/pnas.97.4.1938. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lipsitch M. The rise and fall of antimicrobial resistance. Trends Microbiol. 2001 Sep;9(9):438–444. doi: 10.1016/s0966-842x(01)02130-8. [DOI] [PubMed] [Google Scholar]
- Lowe S. W., Bodis S., McClatchey A., Remington L., Ruley H. E., Fisher D. E., Housman D. E., Jacks T. p53 status and the efficacy of cancer therapy in vivo. Science. 1994 Nov 4;266(5186):807–810. doi: 10.1126/science.7973635. [DOI] [PubMed] [Google Scholar]
- McCurrach M. E., Connor T. M., Knudson C. M., Korsmeyer S. J., Lowe S. W. bax-deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2345–2349. doi: 10.1073/pnas.94.6.2345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McDonald Bruce A., Linde Celeste. Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol. 2002 Feb 20;40:349–379. doi: 10.1146/annurev.phyto.40.120501.101443. [DOI] [PubMed] [Google Scholar]
- Nowak M. A., Anderson R. M., McLean A. R., Wolfs T. F., Goudsmit J., May R. M. Antigenic diversity thresholds and the development of AIDS. Science. 1991 Nov 15;254(5034):963–969. doi: 10.1126/science.1683006. [DOI] [PubMed] [Google Scholar]
- Nowak M. A., Bonhoeffer S., Shaw G. M., May R. M. Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations. J Theor Biol. 1997 Jan 21;184(2):203–217. doi: 10.1006/jtbi.1996.0307. [DOI] [PubMed] [Google Scholar]
- Plotkin Joshua B., Dushoff Jonathan, Levin Simon A. Hemagglutinin sequence clusters and the antigenic evolution of influenza A virus. Proc Natl Acad Sci U S A. 2002 Apr 23;99(9):6263–6268. doi: 10.1073/pnas.082110799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ribeiro R. M., Bonhoeffer S., Nowak M. A. The frequency of resistant mutant virus before antiviral therapy. AIDS. 1998 Mar 26;12(5):461–465. doi: 10.1097/00002030-199805000-00006. [DOI] [PubMed] [Google Scholar]
- Richie Thomas L., Saul Allan. Progress and challenges for malaria vaccines. Nature. 2002 Feb 7;415(6872):694–701. doi: 10.1038/415694a. [DOI] [PubMed] [Google Scholar]
- Richman D. D. HIV chemotherapy. Nature. 2001 Apr 19;410(6831):995–1001. doi: 10.1038/35073673. [DOI] [PubMed] [Google Scholar]
- Sawyers C. L. Research on resistance to cancer drug Gleevec. Science. 2001 Nov 30;294(5548):1834–1834. doi: 10.1126/science.294.5548.1834b. [DOI] [PubMed] [Google Scholar]
- Sidhu Amar Bir Singh, Verdier-Pinard Dominik, Fidock David A. Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations. Science. 2002 Oct 4;298(5591):210–213. doi: 10.1126/science.1074045. [DOI] [PMC free article] [PubMed] [Google Scholar]