Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 2004 Mar 7;271(1538):545–551. doi: 10.1098/rspb.2003.2638

Complex biogeographic history of a Holarctic passerine.

Sergei V Drovetski 1, Robert M Zink 1, Sievert Rohwer 1, Igor V Fadeev 1, Evgeniy V Nesterov 1, Igor Karagodin 1, Evgeniy A Koblik 1, Yaroslav A Red'kin 1
PMCID: PMC1691619  PMID: 15129966

Abstract

Our analysis of the ND2 sequences revealed six clades within winter wrens (Troglodytes troglodytes). These clades corresponded to six geographical regions: western Nearctic, eastern Nearctic, eastern Asia, Nepal, Caucasus and Europe, and differed by 3-8.8% of sequence divergence. Differences among regions explained 96% of the sequence variation in winter wren. Differences among individuals within localities explained 3% of the sequence variation, and differences among localities within regions explained 1%. Grouping sequences into subspecies instead of localities did not change these proportions. Proliferation of the six clades coincided with Early and Middle Pleistocene glaciations. The distribution of winter wren clades can be explained by a series of five consecutive vicariant events. Western Nearctic wrens diverged from the Holarctic ancestor 1.6 Myr before the present time (MYBP). Eastern Nearctic and Palaearctic wrens diverged 1 MYBP. Eastern and western Palaearctic birds diverged 0.83 MYBP. Nepalese and east Asian wrens diverged 0.67 MYBP, and Caucasian birds diverged from European wrens 0.54 MYBP. The winter wren has a much greater degree of inter- and intracontinental differentiation than the three other Holarctic birds studied to date--dunlin (Calidris alpina), common raven (Corvus corax) and three-toed woodpecker (Picoides trydactylus)--and represents an example of cryptic speciation that has been overlooked.

Full Text

The Full Text of this article is available as a PDF (178.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Excoffier L., Smouse P. E., Quattro J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992 Jun;131(2):479–491. doi: 10.1093/genetics/131.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hackett S. J. Molecular phylogenetics and biogeography of tanagers in the genus Ramphocelus (Aves). Mol Phylogenet Evol. 1996 Apr;5(2):368–382. doi: 10.1006/mpev.1996.0032. [DOI] [PubMed] [Google Scholar]
  3. Hewitt G. The genetic legacy of the Quaternary ice ages. Nature. 2000 Jun 22;405(6789):907–913. doi: 10.1038/35016000. [DOI] [PubMed] [Google Scholar]
  4. Omland K. E., Tarr C. L., Boarma W. I., Marzluff J. M., Fleischer R. C. Cryptic genetic variation and paraphyly in ravens. Proc Biol Sci. 2000 Dec 22;267(1461):2475–2482. doi: 10.1098/rspb.2000.1308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Posada D., Crandall K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14(9):817–818. doi: 10.1093/bioinformatics/14.9.817. [DOI] [PubMed] [Google Scholar]
  6. Rodríguez F., Oliver J. L., Marín A., Medina J. R. The general stochastic model of nucleotide substitution. J Theor Biol. 1990 Feb 22;142(4):485–501. doi: 10.1016/s0022-5193(05)80104-3. [DOI] [PubMed] [Google Scholar]
  7. Rogers A. R., Harpending H. Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol. 1992 May;9(3):552–569. doi: 10.1093/oxfordjournals.molbev.a040727. [DOI] [PubMed] [Google Scholar]
  8. Slatkin M., Hudson R. R. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics. 1991 Oct;129(2):555–562. doi: 10.1093/genetics/129.2.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Yang Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol. 1994 Sep;39(3):306–314. doi: 10.1007/BF00160154. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary data file
15129966s01.pdf (152KB, pdf)

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES