Abstract
We explore the transmission process for sexually transmitted diseases (STDs). We derive the classical frequency-dependent incidence mechanistically from a pair-formation model, using an approximation that applies to populations with rapid pairing dynamics (such as core groups or non-pair-bonding animals). This mechanistic derivation provides a framework to assess how accurately frequency-dependent incidence portrays the pair-based transmission known to underlie STD dynamics. This accuracy depends strongly on the disease being studied: frequency-dependent formulations are more suitable for chronic less-transmissible infections than for transient highly transmissible infections. Our results thus support earlier proposals to divide STDs into these two functional classes, and we suggest guidelines to help assess under what conditions each class can be appropriately modelled using frequency-dependent incidence. We then extend the derivation to include situations where infected individuals exhibit altered pairing behaviour. For four cases of increasing behavioural complexity, analytic expressions are presented for the generalized frequency-dependent incidence rate, basic reproductive number (R0) and steady-state prevalence (i infinity) of an epidemic. The expression for R0 is identical for all cases, giving refined insights into determinants of invasibility of STDs. Potentially significant effects of infection-induced changes in contact behaviour are illustrated by simulating epidemics of bacterial and viral STDs. We discuss the application of our results to STDs (in humans and animals) and other infectious diseases.
Full Text
The Full Text of this article is available as a PDF (212.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Able D. J. The contagion indicator hypothesis for parasite-mediated sexual selection. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):2229–2233. doi: 10.1073/pnas.93.5.2229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson R. M., Blythe S. P., Gupta S., Konings E. The transmission dynamics of the human immunodeficiency virus type 1 in the male homosexual community in the United Kingdom: the influence of changes in sexual behaviour. Philos Trans R Soc Lond B Biol Sci. 1989 Sep 5;325(1226):45–98. doi: 10.1098/rstb.1989.0074. [DOI] [PubMed] [Google Scholar]
- Anderson R. M., Garnett G. P. Mathematical models of the transmission and control of sexually transmitted diseases. Sex Transm Dis. 2000 Nov;27(10):636–643. doi: 10.1097/00007435-200011000-00012. [DOI] [PubMed] [Google Scholar]
- Bauch C., Rand D. A. A moment closure model for sexually transmitted disease transmission through a concurrent partnership network. Proc Biol Sci. 2000 Oct 7;267(1456):2019–2027. doi: 10.1098/rspb.2000.1244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blanchard J. F. Populations, pathogens, and epidemic phases: closing the gap between theory and practice in the prevention of sexually transmitted diseases. Sex Transm Infect. 2002 Apr;78 (Suppl 1):i183–i188. doi: 10.1136/sti.78.suppl_1.i183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blower S. M., Gershengorn H. B., Grant R. M. A tale of two futures: HIV and antiretroviral therapy in San Francisco. Science. 2000 Jan 28;287(5453):650–654. doi: 10.1126/science.287.5453.650. [DOI] [PubMed] [Google Scholar]
- Blower S. M., Porco T. C., Darby G. Predicting and preventing the emergence of antiviral drug resistance in HSV-2. Nat Med. 1998 Jun;4(6):673–678. doi: 10.1038/nm0698-673. [DOI] [PubMed] [Google Scholar]
- Boots Michael, Knell Robert J. The evolution of risky behaviour in the presence of a sexually transmitted disease. Proc Biol Sci. 2002 Mar 22;269(1491):585–589. doi: 10.1098/rspb.2001.1932. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowden F. J., Garnett G. P. Trichomonas vaginalis epidemiology: parameterising and analysing a model of treatment interventions. Sex Transm Infect. 2000 Aug;76(4):248–256. doi: 10.1136/sti.76.4.248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diekmann O., Dietz K., Heesterbeek J. A. The basic reproduction ratio for sexually transmitted diseases: I. Theoretical considerations. Math Biosci. 1991 Dec;107(2):325–339. doi: 10.1016/0025-5564(91)90012-8. [DOI] [PubMed] [Google Scholar]
- Dietz K., Hadeler K. P. Epidemiological models for sexually transmitted diseases. J Math Biol. 1988;26(1):1–25. doi: 10.1007/BF00280169. [DOI] [PubMed] [Google Scholar]
- Donovan B. The repertoire of human efforts to avoid sexually transmissible diseases: past and present. Part 1: Strategies used before or instead of sex. Sex Transm Infect. 2000 Feb;76(1):7–12. doi: 10.1136/sti.76.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferguson N. M., Garnett G. P. More realistic models of sexually transmitted disease transmission dynamics: sexual partnership networks, pair models, and moment closure. Sex Transm Dis. 2000 Nov;27(10):600–609. doi: 10.1097/00007435-200011000-00008. [DOI] [PubMed] [Google Scholar]
- Garnett G. P. An introduction to mathematical models in sexually transmitted disease epidemiology. Sex Transm Infect. 2002 Feb;78(1):7–12. doi: 10.1136/sti.78.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garnett G. P., Mertz K. J., Finelli L., Levine W. C., St Louis M. E. The transmission dynamics of gonorrhoea: modelling the reported behaviour of infected patients from Newark, New Jersey. Philos Trans R Soc Lond B Biol Sci. 1999 Apr 29;354(1384):787–797. doi: 10.1098/rstb.1999.0431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garnett G. P. The geographical and temporal evolution of sexually transmitted disease epidemics. Sex Transm Infect. 2002 Apr;78 (Suppl 1):i14–i19. doi: 10.1136/sti.78.suppl_1.i14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gold R. S., Skinner M. J. Judging a book by its cover: gay men's use of perceptible characteristics to infer antibody status. Int J STD AIDS. 1996 Jan-Feb;7(1):39–43. doi: 10.1258/0956462961917032. [DOI] [PubMed] [Google Scholar]
- Hadeler K. P., Castillo-Chavez C. A core group model for disease transmission. Math Biosci. 1995 Jul-Aug;128(1-2):41–55. doi: 10.1016/0025-5564(94)00066-9. [DOI] [PubMed] [Google Scholar]
- Hamilton W. D., Zuk M. Heritable true fitness and bright birds: a role for parasites? Science. 1982 Oct 22;218(4570):384–387. doi: 10.1126/science.7123238. [DOI] [PubMed] [Google Scholar]
- Heesterbeek J. A., Metz J. A. The saturating contact rate in marriage- and epidemic models. J Math Biol. 1993;31(5):529–539. doi: 10.1007/BF00173891. [DOI] [PubMed] [Google Scholar]
- Hsieh Y. H., Sheu S. P. The effect of density-dependent treatment and behavior change on the dynamics of HIV transmission. J Math Biol. 2001 Jul;43(1):69–80. doi: 10.1007/s002850100087. [DOI] [PubMed] [Google Scholar]
- Kavaliers M., Colwell D. D., Choleris E. Parasites and behavior: an ethopharmacological analysis and biomedical implications. Neurosci Biobehav Rev. 1999 Nov;23(7):1037–1045. doi: 10.1016/s0149-7634(99)00035-4. [DOI] [PubMed] [Google Scholar]
- Kiesecker J. M., Skelly D. K., Beard K. H., Preisser E. Behavioral reduction of infection risk. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9165–9168. doi: 10.1073/pnas.96.16.9165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kretzschmar M., Dietz K. The effect of pair formation and variable infectivity on the spread of an infection without recovery. Math Biosci. 1998 Feb;148(1):83–113. doi: 10.1016/s0025-5564(97)10008-6. [DOI] [PubMed] [Google Scholar]
- Kretzschmar M., Jager J. C., Reinking D. P., Van Zessen G., Brouwers H. The basic reproduction ratio R0 for a sexually transmitted disease in a pair formation model with two types of pairs. Math Biosci. 1994 Dec;124(2):181–205. doi: 10.1016/0025-5564(94)90042-6. [DOI] [PubMed] [Google Scholar]
- Kretzschmar M., Morris M. Measures of concurrency in networks and the spread of infectious disease. Math Biosci. 1996 Apr 15;133(2):165–195. doi: 10.1016/0025-5564(95)00093-3. [DOI] [PubMed] [Google Scholar]
- Kretzschmar M. Sexual network structure and sexually transmitted disease prevention: a modeling perspective. Sex Transm Dis. 2000 Nov;27(10):627–635. doi: 10.1097/00007435-200011000-00011. [DOI] [PubMed] [Google Scholar]
- Kretzschmar M., van Duynhoven Y. T., Severijnen A. J. Modeling prevention strategies for gonorrhea and Chlamydia using stochastic network simulations. Am J Epidemiol. 1996 Aug 1;144(3):306–317. doi: 10.1093/oxfordjournals.aje.a008926. [DOI] [PubMed] [Google Scholar]
- Lockhart A. B., Thrall P. H., Antonovics J. Sexually transmitted diseases in animals: ecological and evolutionary implications. Biol Rev Camb Philos Soc. 1996 Aug;71(3):415–471. doi: 10.1111/j.1469-185x.1996.tb01281.x. [DOI] [PubMed] [Google Scholar]
- McCallum H., Barlow N., Hone J. How should pathogen transmission be modelled? Trends Ecol Evol. 2001 Jun 1;16(6):295–300. doi: 10.1016/s0169-5347(01)02144-9. [DOI] [PubMed] [Google Scholar]
- Mertz G. J., Benedetti J., Ashley R., Selke S. A., Corey L. Risk factors for the sexual transmission of genital herpes. Ann Intern Med. 1992 Feb 1;116(3):197–202. doi: 10.7326/0003-4819-116-3-197. [DOI] [PubMed] [Google Scholar]
- Newshan G., Taylor B., Gold R. Sexual functioning in ambulatory men with HIV/AIDS. Int J STD AIDS. 1998 Nov;9(11):672–676. doi: 10.1258/0956462981921332. [DOI] [PubMed] [Google Scholar]
- doi: 10.1098/rspb.1997.0083. [DOI] [PMC free article] [Google Scholar]
- Piot P., Bartos M., Ghys P. D., Walker N., Schwartländer B. The global impact of HIV/AIDS. Nature. 2001 Apr 19;410(6831):968–973. doi: 10.1038/35073639. [DOI] [PubMed] [Google Scholar]
- Schiltz M. A., Sandfort T. G. HIV-positive people, risk and sexual behaviour. Soc Sci Med. 2000 Jun;50(11):1571–1588. doi: 10.1016/s0277-9536(99)00466-9. [DOI] [PubMed] [Google Scholar]
- Webster Joanne P., Hoffman Joseph I., Berdoy Manuel. Parasite infection, host resistance and mate choice: battle of the genders in a simultaneous hermaphrodite. Proc Biol Sci. 2003 Jul 22;270(1523):1481–1485. doi: 10.1098/rspb.2003.2354. [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.